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The particle in a box 
 
The particle in a box is a thought problem looking at the wavefunction of a particle that is 
confined in space in one dimension.  We imagine this confinement comes from walls that are 
infinitely high in energy.  As such, this is a thought problem (there are no infinite energy walls).  
None the less, there are problems with very very high walls so this demonstrates some key ideas 
that hold for all QM problems.   
 
How will be put infinitely high walls into the problem.  We will set the potential energy to 
infinity in certain regions of space.  From x=0 to x=L the potential energy is equal to zero.  
Everywhere else then potential is infinity.  As such we have reduce the whole universe to the 
space between x=0 and x=L.  That is we know the particle cannot exist in the areas of infinite 
potential, and thus in those regions we say the wavefunction must be equal to zero.  What is it 
between the walls? 
 
For that we have to solve the Schrödinger equation.  As this is done in the book and class, I will 
be brief here. 
 
First let’s look at the equation.  Since V(x)=0, the equation is much simpler. 
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Now the problem is simply what function when we take its second derivative is equal to itself 
times a constant.  Our choices are sine and cosine (or the exp, but a generic exponential function 
is actually sine and cosine). 
 
The generic solution will be 
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Where A, B, a, b are unknown constants. 
 



We can find them using other information we have.  At x=0 and L=0 the wavefunction must be 
zero.  Why? Outside the box the wavefucntion is zero and it must be continuous at these points.  
Thus we know 
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ψ(o) =ψ(L) = 0  
 
This is true for sine but not cosine.  Thus B = 0 and we can drop the cos part (and not worry 
about b) 
 
Then what about A & a?   Well a needs to be a special value for the wavefunction to be zero 
when x = L.  In fact is must be that a = nπL where n is an integer n=1,2,3,….  Wow!  We have 
quantized discrete solutions just from the boundary conditions for the wave.  This will give us 
discrete energies just like we saw in the H-atom line spectra.   
 
What about A?  If we look at the integral of the square of the wavefunction we can figure this 
out. 
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So A = sqrt(2/L) 
 
Now we have a set of wavefunctions 
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For each of these wavefunction we can find an energy using the Schrödinger equation.  Plug in 
the wavefucntion and find En. 
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Look in the book at these solutions and their energies?  The wavefunctions as n increases have 
more times that they change sign (nodes).  Where are you most likely to find the particle in the 
n=1 state?  The n=2 state?   
 
Note there are places where the wavefunction changes sign.  These are called nodes.  When we 
square the wavefunction these will still be zero and the particle has no probability of being 
located in these regions.  It is very important to note that the sign of the wavefunction is 
important when two waves are interacting as this will affect how they interfere.  However under 
no circumstance should you ever interpret the sign of the wavefunction to be related to charge or 
something like that.  If it is negative it is just because the function is negative.  Positive and 
negative are merely opposites when you are comparing them.  The important thing to compare 
with two waves is do they have the same sign or opposite signs.   



Question:  How many nodes are their in the n=4 state? 
 
 
What do we see about the energy. 
 
1.  Energy is inversely proportional to the mass.  Therefore when the mass is large, the energy 
levels (and their spacings) become very very small.  Thus we don’t have to worry about the 
quantum energy levels of a baseball in a box. 
 
2.  Energy is proportional to 1/L2.  Thus as the box gets large the energy levels get small (even 
faster than with respect to the mass).  Again a big box will have essentially continuous energy 
levels since they are so close together.  As the box length gets small and the particle is confined 
then the energies increase.  This is an important general idea.  Confinement leads to higher 
energies (and energy spacings).   
 
3.  The energy levels increase as n2.  Therefore as we go up in energy the spacing between the 
levels is getting larger and larger. 
 
4.  Finally, the lowest energy is not zero, but finite.  This is the idea of zeropoint energy.  This is 
the lowest energy possible. 
 
 
Other questions to ponder. 
 
 
What is the probability the particle is on the left hand side of the box?  The right hand side of the 
box? 
 
In the n=1 state there is a node in the middle of the box where the probability of finding the 
particle is zero.  If this is the case, how does the particle get from one side of the box to the 
other?  This is a “bad” question.  The particle is on both sides of the box at the same time.  It is 
not a particle or a wave despite the fact that we cannot escape that language in talking about it.  It 
is a QM object that is described by the wavefunction.   


