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The Hydrogen Atom 
 
 
All we need to do is solve the Schrödinger equation. 
 
So we need to write down the Hamiltonian that has the kinetic energy part like every other QM 
problem and the potential energy part which is different in each problem.  Here the problem has 
spherical symmetry so we will choose to write the problem in spherical coordinates. 
 
Here our three dimensions are not the Cartesian x, y, and z.  Instead we right position as a 
function of r the distance from the origin, and two angles θ and φ.  Theta (θ) is the angle away 
form the z-axis, and Phi (φ) is the angle away from the x-axis in the xy-plane.  The easiest way 
to think about this is on a globe.  When theta = 0 you are at the north pole.  When theta = pi/2 (in 
radians) you are at the equator (this is 90°).  When theta = pi you are at the south pole.  Phi 
determines where you are in the “east-west” direction.  Phi can range from 0 to 2pi. 
 
This makes taking derivatives slightly more complicated (which we won’t do much of).  It also 
makes taking integrals more complicated, which we will do.  This is because when we are 
integrating we are essentially adding up the function over a certain region of space.  In Cartesian 
coordinates if I integrate in three dimensions the volume for an infinitesimal change in 
coordinate is the same at all points dV = dx dy dz.  However, in spherical coordinates the volume 
depends on both r and theta.  This if fairly easy to visualize again with the globe. I ask you to 
integrate by walking around the globe.  If you integrate the variable phi from 0 to 2pi,  this 
distance is a strong function of both r and theta.  For theta = 0 (the north pole).  You can 
essentially turn in place and cover all angle phi.  At the equator this is a long distance (the 
circumference of the earth).  In addition, this distance depends on r.  The circumference at the 
equator clearly depends on the radius of the earth.   We need to take these two affects into 
account when integrating.  The results is that the volume element dV in spherical coordinates is 
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dV = r2 sinθdrdθdφ  
 
That is we have the changes in the coordinates and a factor of r2sin(θ) in addition. 
 
This will be important when we look at probability densities. 



 
 
Now on the Schrödinger equation. 
 
What is the Hamiltonian. 
 
In spherical coordinates it is 
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ˆ H = −2

2m
∇2 + V (r)

where   ∇2 is the 2nd derivative in spherical coordinates
and

V (r) =
−Ze2

4πε0r
 

 

 
The potential V(r) is simply Coulomb’s law for an electron at a distance r from a nucleus of 
charge +Ze. 
 
Now we just have to find the wavefunctions. 
 
We discover that they can be broken into two parts.  On part which is only a function of the 
radius and another that is only a function of the angles. 
 
 
Moreover, we have three dimensions so we end up with three quantum numbers.   
 
They are  
 
n the principle quantum number 
 
l the angular momentum quantum number 
 
m the magnetic quantum number 
 
 
The radial part of the wavefunction depends on n and l, the angular part on l and m. 
 
Most importantly, it turns out the energy only depends on n.  What are the energies. 
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Does this look familiar?  It should.  It is the same as the energies from the Bohr model.  
Remember this correctly matched the experimental line spectra for the H-atom.  As such, we 
should hope our new solution also predicts these values.  In fact, many would say the QM 
solution is “exact”.  An it is, in the sense that it is the exact solution to the Schrödinger equation.  
And thus if QM is actually what governs the world and we have written down the correct 
Hamiltonian, then it is exact.  We don’t address the first one.  This we’ll simply take for granted.  
The 2nd one however, we need to address as there are something we have not included.  Most 
importantly, relativity.  However, as we have tried to figure out in many HW problems. We 
would expect relativistic effects for atoms with large nuclear charges.  Thus our solutions will be 
very good for the H atom.  And potentially very bad for Au+78. 
 
What else do we know about the solutions? 
 
The quantum numbers are related. 
 
n can range from 1, 2, 3,…. 
 
l has values starting at 0 and going up to n-1 
 
m has values starting at –l and going up to +l 
 
Thus for n=3  all the possibilities are 
 
n = 3 l=2  m=-2,-1,0,1, 2 
 l=1 m=-1,0,1 
 l=0 m=0 
 
for a total of 9 degenerate (same energy) solution.  The total number of function for any value of 
n is n2. 
 
 
What do these functions looks like?  They are simply mathematical functions.  They have two 
parts,  
 
the radial part  
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Rn,l (r)   and the angular part  
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Yl,m (θ,φ) 
 
 
You can see these functions and many plots of them in the book. 
 
Things to think about. 
 
The difference between the radial wavefunction R(r) and the probability density r2[R(r)]2? 
 
The probability density has a factor of r2 in it to take into account the volume element getting 
larger as r increases.     
 



 
The functions have names that are based on there shape.  The shape comes predominately from 
the angular part and mostly from l.  Thus the names depend on l. 
 
l=0 is S, l=1 is P, l=2 is D, l=3 if F, l=4 is G, …. 
 
 
What do the radial functions look like?  Mostly they are an exponential decay multiplied by a 
polynomial.  The polynomial gets higher order as n increases.  Thus they all decay to zero as r 
goes to infinity.  This is good.  The electron should be mostly by the nucleus.  They also get 
more “wiggly” as n increases.  This to say the wavefunction changes sign and there are nodes.  
Just like the particle in a box, the number of nodes increases with energy.  In the H-atom the 
number of nodes is equal to n-1.   
 
Let’s think about the S functions. 
 
For n=1 the radial part here is peaked at r=0 and then decays away exponentially.  The 
probability that the electron is at r=0 is still however zero as the volume element is equal to zero 
at this distance.  This means the radial distribution function has a peak away from the nucleus 
and then decays away at large r.  For higher n the function is similar but multiplied by a 
polynomial.   The decay is also “slower” and thus the peak of the function is at larger r.   In 
addition, the polynomial causes the wavefunction to change sign.  This creates nodes in the 
probability distribution.  Thus with one node (n=2, l=0) there are two peaks.  However, the 
second is larger than the first.  This means as I move away from the nucleus first the probability 
increases, then peaks, then goes to zero, then increases again to a larger probability, and then 
decays away to zero.   For the 3s function it is the same but with 2 nodes and three peaks.  The 
largest peak is always the one farthest from the nucleus.   
 
This no brings up the difficult issue of how to plot such a 3-d function.  Often what is done is to 
chose a radius (say the most probable distance) and draw a sphere.  However, this means we 
can’t “see” inside to notice that there are nodes.  Another scheme is to imagine a slice through 
the sphere to show the nodes.  Or one can simply plot the radial function and know that for l=0 
the anglular function is constant (thus spherical = same at all angles). 
 
What is I want to know “how big is a H-atom”.  This is a problem as the probability has a finite 
value extending out to r= infinity.  However, at large r this probability though finite is very very 
small.  Thus I might as at what distance do I have to go out until I have a 95% probability of 
finding the electron.  Or 99%.   Or 99.9%... 
 
To do this I would need to solve an integral.  What would it be? 
 
I need to integrate up the probability (the wavefunction squared x volume element) until I get a 
value of 0.95 (for 95%).  What would this look like? 
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Rn,l
2 (r)

0

2π

∫
0

π

∫
0

r.95

∫ Yl ,m
2 (θ,φ)r2 sinθdrdθdφ  



 
This is really three integrals.  The first is integrating over r. The second over theta.  The third 
over phi.  I can put the radial part together and the angular part together and I get 
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Rn,l
2 (r)r2dr

0

2π

∫
0

π

∫
0

r.95

∫ Yl ,m
2 (θ,φ)sinθdθdφ = 4π r2

0

r.95

∫ Rn,l
2 (r)dr  

 
This reduces to simply and integral over r, because all of the angular function when integrated up 
over all angles are equal to 4pi.   
 
Thus what am I looking for?  I want to find the limit of the integration r.95 such that the integral 
is equal to 0.95 
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0.95 = 4π r2
0

r.95

∫ Rn,l
2 (r)dr  

 
If I integration to r = infinity then I get 1.  How far to have to integrate to get 0.95?  That is the 
distance I’m looking for.  
 
 
P-orbitals. 
 
 
Now we have to think about visualizing both the radial part and the angular part.  The radial part 
is very similar except that the functions start out with a value of zero at r=0 (that is both the 
function and the radial distribution are 0 are r=0).  Then they peak.  Then they decay.  As n 
increases they get nodes.   
 
The angular part we need to try to “visualize” by plotting the value of the function as a function 
of angle.  This is often done by plotting the length of a vector (arrow) away from the origin as a 
function of angle.  For Y1,0 we see this is simply cos(theta).  Thus the maximum is at theta = 0, 
the function is zero and changes sign at pi/2, and then there is a minimum at theta = pi.   
Visualized in 3-d this yield a sort of “dumbbell shape”.  Thus the dumbbell shape of the p-
function. 
 
The p functions have 1 angular node (at pi/2).  Thus for n =2  there is only 1 node (n-1).   
 
For 2s the one node is a radial node. 
For 2p the one node is an angular node. 
 
For the p function we run into more difficulty visualizing the functions as Y1,1 and  Y1,-1 turn out 
to be complex functions (they have imaginary numbers).  Thus we make some new solutions that 
are linear combination of these two.  They end up looking just like the Y1,0 function but oriented 
differently.  The Y10 function is aligned along the z-axis and we call is pz, the other two are 
aligned along x and y and thus are px and py.    



 
Now for a quandary.  We excited the electron in H from its ground state (n=1, l=0, m=0) up to a 
2p orbital.  What shape is the excited state?  Is it still spherical?    Yes.  It has to be.  Therefore 
the best way to think about it is that in the absence of any external perturbation (interaction with 
something else like a magnetic field or another atom) the electronic is best thought of as being in 
all three p function at the same time.   
 
Finally, a mistake from class. 
 
At the end of class we looked at the average distance r that the electron is away from the nucleus.  
This is mostly a function of n.  As n increase the average radius r increases.  However it is a 
slight function of l such that for the same n as l increase the average r is slight smaller.  Put 
another way an electron in a 3p function is on average closer to the nucleus than in a 3s.  
However, I mistakenly suggested that this meant they had different potential energies.  This is 
not the case.  They all have the same total energy, the same average potential energy, and the 
same average kinetic energy.   
 
That is all I can think of for now. 
 
 


