Today

Titration

determining something about an unknown by reacting it with a known solution

Polyprotic Acids

Principles of Chemistry II

Titration

Why do a titration.

You have a solution with an unknown property

Unknown Concentration? Unknown Ka (Kb)? Both.

Slowly neutralize the solution by adding a strong base (acid) monitor the pH with each addition

Principles of Chemistry II

Neutralize first Then look at the neutralization from last class equilibrium imagine a 100 mL solution with 0.1 M Acetic Acid (initial .01 moles) we add 10 mL of 0.1M NaOH in each titration step (add 0.001 moles) Initial (moles) After Neutralization Volume (L) Equilibrium HA $OH^{-} A^{-}$ HA OH^{-} A^{-} pH 0.010 0.000 0.000 0.010 0.000 0.00 0 1 0 2.87 0.009 0.000 0.001 3.79 0.11 0.010 0.001 0.00

Principles of Chemistry II

Then look at the neutralization from last class equilibrium

imagine a 100 mL solution with 0.1 M Acetic Acid (initial .01 moles) we add 10 mL of 0.1M NaOH in each titration step (add 0.001 moles)

Initial (moles)			After N	After Neutralization			Equilibrium
HA	OH-	A-	HA	OH-	A-		pН
0.010	0.000	0.00	0.010	0.000	0.000	0.10	2.87
0.010	0.001	0.00	0.009	0.000	0.001	0.11	3.79
0.009	0.001	0.00	0.008	0.000	0.002	0.12	4.15

Then look at the neutralization from last class equilibrium

imagine a 100 mL solution with 0.1 M Acetic Acid (initial .01 moles) we add 10 mL of 0.1M NaOH in each titration step (add 0.001 moles)

Initial (moles)			After M	Neutrali	zation	Volume (L)	Equilibrium
HA	OH-	A-	HA	OH-	A-		pН
0.010	0.000	0.00	0.010	0.000	0.000	0.10	2.87
0.010	0.001	0.00	0.009	0.000	0.001	0.11	3.79
0.009	0.001	0.00	0.008	0.000	0.002	0.12	4.15
	•••••						
0.006	0.001	0.005	0.005	0.000	0.005	0.15	4.75

Then look at the neutralization from last class equilibrium

imagine a 100 mL solution with 0.1 M Acetic Acid (initial .01 moles) we add 10 mL of 0.1M NaOH in each titration step (add 0.001 moles)

Initia	l (moles	s)	After N	Neutrali	zation	Volume (L)	Equilibrium
HA	OH-	A⁻	HA	OH-	A-		PН
0.010	0.000	0.00	0.010	0.000	0.000	0.10	2.87
0.010	0.001	0.00	0.009	0.000	0.001	0.11	3.79
0.009	0.001	0.00	0.008	0.000	0.002	0.12	4.15
	•••••						
0.006	0.001	0.005	0.005	0.000	0.005	0.15	4.75
	••••						
0.001	0.001	0.009	0.000	0.000	0.010	0.15	8.78

Then look at the neutralization from last class equilibrium

imagine a 100 mL solution with 0.1 M Acetic Acid (initial .01 moles) we add 10 mL of 0.1M NaOH in each titration step (add 0.001 moles)

Initial (moles)			After N	Neutrali	zation	Volume (L)	Equilibrium
HA	OH-	A-	HA	OH-	A-		pН
0.010	0.000	0.00	0.010	0.000	0.000	0.10	2.87
0.010	0.001	0.00	0.009	0.000	0.001	0.11	3.79
0.009	0.001	0.00	0.008	0.000	0.002	0.12	4.15
	•••••						
0.006	0.001	0.005	0.005	0.000	0.005	0.15	4.75
	•••••						
0.001	0.001	0.009	0.000	0.000	0.010	0.15	8.78
0.000	0.001	0.010	0.000	0.001	0.010	0.16	12.8
Princi	ples of	Chem	istry II				© Vanden Bo

Titrating a weak acid

Titrating a weak acid

Titrating a weak acid

at the equivalence point we have equal number of moles of acid and base

Principles of Chemistry II

Neutralize first Then look at the equilibrium

imagine a 100 mL solution with 0.1 moles of HCI we add .01 moles of NaOH in each titration step (10 mL of 1M)

Initial			After Ne	utralization	Volume (L)	Equili	brium
	mol H ⁺	mol OH ⁻	mol H ⁺	mol OH⁻		pН	рОН
	0.1	0.01	0.09	0.00	0.11	0.09	13.91
	0.09	0.01	0.08	0.00	0.12	0.18	13.82
	0.08	0.01	0.07	0.00	0.13	0.27	13.76
	•••••	•••					
	0.02	0.01	0.01	0.00	0.19	1.28	12.72
	0.01	0.01	0.00	0.00	0.20	7.00	7.00
	0.0	0.01	0.0	0.01	0.21	12.67	1.33
	0.0	0.02	0.0	0.02	0.22	12.86	1.04
ri	inciples		©V	anden Bout			

At the endpoint of your titration you have added 40 mL of a IM NaOH solution to 200 mL of an unknown HCI solution. What was the concentration of the HCI?

A.	0.I M
В.	0.2 M
C.	0.4 M
D.	ΙM
E.	2 M

Principles of Chemistry II

- A. weak acid with a strong base
- B. weak base with a strong acid
- C. strong acid with a strong base
- D. strong base with a strong acid

Finding the endpoint (equivalence point) Indicator dye

Phenolphthalein

amount of indicator is so small it doesn't affect the pH, but the equilibrium of the dye is strongly affected by the pH

[A-] $K_a = [H^+] \times -----$ [HA] Pink = [H⁺] × —— Clear

pKa = 8.2 $K_a = 6.3 \times 10^{-9}$ HO c = 0.CO2 Colourless Pink A-HA $[H^+] > 6.3 \times 10^{-9}$ $[H^+] < 6.3 \times 10^{-9}$ _pH < 8.2 pH>8.2 Pink Pink < > Clear

Principles of Chemistry II

© Vanden Bout

Clear

OН

Bromophenol Blue has a pK_a of around 4. When it is protonated (HA form) it is green, when it is deprotonated (A⁻ form) it is blue.

What color would in be in a solution in which the pH was 8?

- A. blue
- B. green
- C. a mix of blue and green

Principles of Chemistry II

Example of 6 acids with different Ka's but the same concentration Same concentration will produce the same equivalence point

Weak base titrated with strong acid

Basic solution starts at high pH (basic) goes to low (acid)

Principles of Chemistry II

A.	I x 10 ⁻³	
B.	I x 10 ⁻⁵	
C.	I × 10 ⁻⁸	
D.	I × 10 ⁻⁹	

Polyprotic Acids

Acids that have more than one proton to lose

Now we need to keep track of all the "forms" of the acid

Monoprotic HA, A⁻

Diprotic H_2A , HA^- , A^{2-}

Triprotic H_3A , H_2A^- , HA^{2-} , A^{3-}

Key Question
What is in solution!

$$H_2A(aq) \leftrightarrow H^+(aq) + HA^-(aq)$$
 $K_{a1} = \frac{[H^+][HA^-]}{[H_2A]}$
 $HA^-(aq) \leftrightarrow H^+(aq) + A^{2-}(aq)$
 $K_{a2} = \frac{[H^+][A^{2-}]}{[HA^-]}$

we'll reduce all such problems to 1 or 2 major forms of the acid.

First figure out which ones will be in solution

carbon double bonded to an oxygen bonded to carbon on one side OH on the other side

Principles of Chemistry II

Citric Acid

$$K_{a1} = 7.4 \times 10^{-4} \qquad K_{a2} = 1.7 \times 10^{-5} \qquad K_{a3} = 4.0 \times 10^{-7}$$
Lets look at K_{a2}

$$K_{a2} = [H^+] \frac{[HA^{2-}]}{[H_2A^-]} \qquad \frac{[HA^{2-}]}{[H_2A^-]} = \frac{K_{a2}}{[H^+]} = \frac{1.7 \times 10^{-5}}{0.027} = 6.3 \times 10^{-4}$$
This is a very small number
very very little HA²⁻ the second proton doesn't come off
pH is dominated by the first proton equilibrium
So we really only need to consider

the $[H^+]$ concentration changing due to K_{aI}

What do I have in solution at different pH values?

Principles of Chemistry II

What do I have in solution at different pH values?

Principles of Chemistry II

What do I have in solution at different pH values?

Principles of Chemistry II

When do I care about the other protons?

When I neutralize the acid.

As you neutralize the first protons, the second will come off,

If I add 0.1 moles of NaOH to 0.05 moles of H₃PO₄ what will be the dominant species in solution?

If I add 0.1 moles of NaOH to 0.05 moles of H₃PO₄ what will be the dominant species in solution?

- A. H_3PO_4 and $H_2PO_4^-$
- B. $H_2PO_4^-$
- C. $H_2PO_4^-$ and HPO_4^{2-}
- D. HPO4²⁻
- E. HPO_4^{2-} and PO_4^{3--}

Principles of Chemistry II

What is the pH of a solution with 0.5 M HPO $_4^{2-2}$?

to simplify we'll use the generic notation HPO_4^{2-} is HA^{2-}

HA²⁻ is found in equilibria 2 & 3

$$K_{a2} = \frac{[H^+][HA^{2-}]}{[H_2A^-]} \qquad K_{a3} = \frac{[H^+][A^{3-}]}{[HA^{2-}]}$$

Species that are both acids and bases are "Amphiprotic"

Principles of Chemistry II

What is the pH of a solution with 0.5 M HPO $_4^{2-2}$?

H₃PO₄
$$K_{a1} = 7.1 \times 10^{-3}$$

 $K_{a2} = 6.3 \times 10^{-8}$
 $K_{a3} = 4.5 \times 10^{-13}$

$$K_{a2} = \frac{[H^+][HA^{2-}]}{[H_2A^-]} \qquad K_{a3} = \frac{[H^+][A^{3-}]}{[HA^{2-}]}$$

$$[HA^{2-}] = \frac{[H^+][A^{3-}]}{K_{a3}} \qquad K_{a2} = \frac{[H^+][H^+][A^{3-}]}{[H_2A^-]K_{a3}}$$

$$[H^+] = \sqrt{K_{a2} \times K_{a3}}$$

Principles of Chemistry II

If I add 0.1 moles of NaOH to 0.07 moles of H₃PO₄ what will be the dominant species in solution?

Principles of Chemistry II

Titration of a polyprotic

Two equivalence points Diprotic H₂A

Principles of Chemistry II

Titration of a polyprotic

Principles of Chemistry II

equivalence point I moles $OH^- = moles H_2A$ All H₂A converted to HA⁻

Principles of Chemistry II

