Polyprotic Acids

More than one acid/base group

Principles of Chemistry II

Polyprotic Acids

Acids that have more than one proton to lose

Now we need to keep track of all the "forms" of the acid

Monoprotic HA, A⁻

Diprotic H_2A , HA^- , A^{2-}

Triprotic H_3A , H_2A^- , HA^{2-} , A^{3-}

Key Question
What is in solution!

$$H_2A(aq) \leftrightarrow H^+(aq) + HA^-(aq)$$
 $K_{a1} = \frac{[H^+][HA^-]}{[H_2A]}$
 $HA^-(aq) \leftrightarrow H^+(aq) + A^{2-}(aq)$
 $K_{a2} = \frac{[H^+][A^{2-}]}{[HA^-]}$

we'll reduce all such problems to 1 or 2 major forms of the acid.

First figure out which ones will be in solution

carbon double bonded to an oxygen bonded to carbon on one side OH on the other side

Principles of Chemistry II

$$K_{a2} = 1.7 \times 10^{-5}$$

Assuming that $[H^+] = .027$ what is the ratio of deprotonated to protonated for the second proton?

$$K_{a2} = 1.7 \times 10^{-5}$$
Assuming that [H⁺] =.027 what is the ratio of
deprotonated to protonated for the second proton?
Lets look at K_{a2}

$$K_{a2} = [H^+] \frac{[HA^{2-}]}{[H_2A^-]} = \frac{[HA^{2-}]}{[H_2A^-]} = \frac{K_{a2}}{[H^+]} = \frac{1.7 \times 10^{-5}}{0.027} = 6.3 \times 10^{-4}$$
This is a very small number

$$K_{a2} = 1.7 \times 10^{-5}$$
Assuming that [H⁺] =.027 what is the ratio of
deprotonated to protonated for the second proton?
Lets look at K_{a2}

$$K_{a2} = [H^+] \frac{[HA^{2-}]}{[H_2A^-]} = \frac{[HA^{2-}]}{[H_2A^-]} = \frac{K_{a2}}{[H^+]} = \frac{1.7 \times 10^{-5}}{0.027} = 6.3 \times 10^{-4}$$
This is a very small number

very very little HA²⁻ the second proton doesn't come off pH is dominated by the first proton equilibrium

So we really only need to consider the $[H^+]$ concentration changing due to K_{al}

Principles of Chemistry II

When will the other protons matter?

If we just want the pH of the solution, then it will be dominated by the first K_a

We need to consider the others if we are controlling the pH

Principles of Chemistry II

What do I have in solution at different pH values?

Principles of Chemistry II

What do I have in solution at different pH values?

Principles of Chemistry II

What do I have in solution at different pH values?

Principles of Chemistry II

When do I care about the other protons?

When I neutralize the acid.

As you neutralize the first protons, the second will come off,

If I add 0.1 moles of NaOH to 0.05 moles of H₃PO₄ what will be the dominant species in solution?

- A. H_3PO_4 and $H_2PO_4^-$
- B. $H_2PO_4^-$
- C. $H_2PO_4^-$ and HPO_4^{2-}
- D. HPO4²⁻
- E. HPO_4^{2-} and PO_4^{3--}

Principles of Chemistry II

What is the pH of a solution with $0.5 \text{ M Na}_2\text{HPO}_4$?

to simplify we'll use the generic notation HPO_4^{2-} is HA^{2-}

HA²⁻ is found in equilibria 2 & 3

$$K_{a2} = \frac{[H^+][HA^{2-}]}{[H_2A^-]} \qquad K_{a3} = \frac{[H^+][A^{3-}]}{[HA^{2-}]}$$

Species that are both acids and bases are "Amphiprotic"

Principles of Chemistry II

What is the pH of a solution with 0.5 M HPO $_4^{2-2}$?

$$K_{a2} = \frac{[H^+][HA^{2-}]}{[H_2A^-]}$$
 $K_{a3} = \frac{[H^+][A^{3-}]}{[HA^{2-}]}$

Principles of Chemistry II

What is the pH of a solution with 0.5 M HPO_4^{2-2} ?

H₃PO₄
$$K_{a1} = 7.1 \times 10^{-3}$$

 $K_{a2} = 6.3 \times 10^{-8}$
 $K_{a3} = 4.5 \times 10^{-13}$

$$K_{a2} = \frac{[H^+][HA^{2-}]}{[H_2A^-]}$$
 $K_{a3} = \frac{[H^+][A^{3-}]}{[HA^{2-}]}$

$$[HA^{2-}] = \frac{[H^+][A^{3-}]}{K_{a3}} \qquad K_{a2} = \frac{[H^+][H^+][A^{3-}]}{[H_2A^-]K_{a3}}$$

Principles of Chemistry II

What is the pH of a solution with 0.5 M HPO_4^{2-2} ?

H₃PO₄
$$K_{a1} = 7.1 \times 10^{-3}$$

 $K_{a2} = 6.3 \times 10^{-8}$
 $K_{a3} = 4.5 \times 10^{-13}$

$$K_{a2} = \frac{[H^+][HA^{2-}]}{[H_2A^-]} \qquad K_{a3} = \frac{[H^+][A^{3-}]}{[HA^{2-}]}$$

$$[HA^{2-}] = \frac{[H^+][A^{3-}]}{K_{a3}} \qquad K_{a2} = \frac{[H^+][H^+][A^{3-}]}{[H_2A^-]K_{a3}}$$

$$[H^+] = \sqrt{K_{a2} \times K_{a3}}$$

Principles of Chemistry II

If I add 0.1 moles of NaOH to 0.07 moles of H₃PO₄ what will be the dominant species in solution?

- A. H_3PO_4 and $H_2PO_4^-$
- B. $H_2PO_4^-$
- C. $H_2PO_4^-$ and HPO_4^{2-}
- D. HPO4²⁻
- E. HPO_4^{2-} and PO_4^{3--}

Principles of Chemistry II

Titration of a polyprotic

Two equivalence points Diprotic H₂A

Principles of Chemistry II

Titration of a polyprotic

Principles of Chemistry II

equivalence point I moles $OH^- = moles H_2A$ All H₂A converted to HA⁻

Principles of Chemistry II

How many equivalence points are in this titration?

How many many protons does this acid have?

How many many protons does this acid have?

What is(are) the dominate species in the solution at pH 4?

A. H_2A , HA^- B. HA^- C. HA^- , A^{2-} D. A^{2-}

Principles of Chemistry II

Given the following curve estimate K_{a2} for this unknown acid

A. 10^{-10} B. 10^{-4} C. 9×10^{-6} D. 5×10^{-7}

Principles of Chemistry II

What happens in our bubbling experiment to make the solution clear?

- A. the indicator dye evaporates
- B. the solution becomes more acidic
- C. the solution becomes more alkaline (basic)
- D. the solution becomes too dilute to see the color

Principles of Chemistry II

What makes the solution acidic?

- A. dissolved oxygen gas
- B. dissolved nitrogen gas
- C. dissolved carbon dioxide gas
- D. saliva

Principles of Chemistry II

What is one consequence of increased CO_2 in the Earth's atmosphere?

- A. oceans becoming more acidic
- B. oceans becoming more alkaline

Principles of Chemistry II

