Let's think about Acids

Principles of Chemistry II

What is in solution?

Which of the following is amphiprotic?

Principles of Chemistry II

What is in solution?

If I add 0.1 moles of NaOH to 0.07 moles of H₃PO₄ what will be the dominant species in solution?

- A. H_3PO_4 and $H_2PO_4^-$
- B. $H_2PO_4^-$
- C. $H_2PO_4^-$ and HPO_4^{2-}
- D. HPO4²⁻
- E. HPO_4^{2-} and PO_4^{3--}

Principles of Chemistry II

How would I find the pH

If I add 0.1 moles of NaOH to 0.07 moles of H₃PO₄ how would I solve for the pH

- A. It will be a weak acid
- B. It will be amphiprotic between K_{a1} and K_{a2}
- C. It will be a buffer around Kal
- D. It will be a buffer around K_{a2}
- E. It will be a weak base

Principles of Chemistry II

How would I find the pH

If I add 0.15 moles of NaOH to .05 moles of H₃PO₄ how would I solve for the pH

- A. It will be a weak acid
- B. It will be amphiprotic between K_{a1} and K_{a2}
- C. It will be a buffer around K_{a1}
- D. It will be a buffer around K_{a2}
- E. It will be a weak base

Principles of Chemistry II

Titration of H₂CO₃

What is (are) the dominant species at pH = 6?

A.
$$H_2CO_3/HCO_3^-$$

B. HCO₃-

C. HCO₃⁻/CO₃²⁻

D. CO_3^{2-}

Principles of Chemistry II

Recognizing a buffer

Which of the following will form a buffer?

- A. 100 mL of 1M HCl and 100 mL 1M of NaF
- B. 100 mL of 1M HCl and 50 mL of 1M NaOH
- C. 100 mL of 1M HCl and 50 mL of 1M NaCl
- D. 100 mL of IM HCI and 50 mL of IM NH_3
- E. 100 mL of IM HCI and 200 mL of IM Na(CH₃COO)

Solubility and Acids and Bases

Which of the following will form a buffer?

- A. 100 mL of 1M HCl and 100 mL 1M of NaF
- B. 100 mL of 1M HCl and 50 mL of 1M NaOH
- C. 100 mL of IM HCl and 50 mL of IM NaCl
- D. 100 mL of IM HCI and 50 mL of IM NH_3
- E. 100 mL of IM HCI and 200 mL of IM Na(CH₃COO)

Rolaids® contain about 0.1 g of Magnesium Hydroxide Why in the world would you ever put such a thing in your mouth?

- A. 0.1 g is nothing. I eat 10-20 g NaOH daily just for laughs
- B. Acids are dangerous by bases as quite safe
- C. The saliva in my mouth is acidic enough to "handle it"
- D. $Mg(OH)_2$ is not soluble in water

What happens in our bubbling experiment to make the solution clear?

- A. the indicator dye evaporates
- B. the solution becomes more acidic
- C. the solution becomes more alkaline (basic)
- D. the solution becomes too dilute to see the color

Principles of Chemistry II

Thinking about acid/base chemistry Methyl Red pKa = 5.2

What happens in our bubbling experiment to make the solution clear?

- A. the indicator dye evaporates
- B. the solution becomes more acidic
- C. the solution becomes more alkaline (basic)
- D. the solution becomes too dilute to see the color

Principles of Chemistry II

What makes the solution acidic?

- A. dissolved oxygen gas
- B. dissolved nitrogen gas
- C. dissolved carbon dioxide gas
- D. saliva

Principles of Chemistry II

What is one consequence of increased CO_2 in the Earth's atmosphere?

- A. oceans becoming more acidic
- B. oceans becoming more alkaline (basic)

Principles of Chemistry II

In Austin (an most places) water out of the tap is

- A. neutral
- B. slightly acidic
- C. slightly basic

Principles of Chemistry II

In Austin (an most places) water out of the tap is

- A. neutral
- B. slightly acidic
- C. slightly basic

because the ground if full of limestone (CaCO₃)

What makes the solution acidic? $CaCO_3(s) \leftrightarrow CO_3^{2-}(aq) + Ca^{2+}(aq)$ $CO_3^{2-}(aq) + H^+(aq) \leftrightarrow HCO_3^{-}(aq)$ $HCO_3^{-}(aq) + H^{+}(aq) \leftrightarrow H_2CO_3(aq)$ $H_2CO_3(aq) \leftrightarrow CO_2(aq) + H_2O(l)$ $CO_2(aq) \leftrightarrow CO_2(g)$

If I add alot of NaHCO3 to an HCI solution the predominate species in solution will be

- A. H⁺
- B. H_2CO_3 and HCO_3^-
- C. only HCO_3^-
- D. HCO_3^{-1} and CO_3^{2-1}
- E. only CO_3^{2-}

Principles of Chemistry II

$$\begin{aligned} H_2CO_3(aq) &\longleftrightarrow HCO_3^-(aq) + H^+(aq) & pK_{a1} = 6.3 \\ HCO_3^-(aq) &\longleftrightarrow CO_3^{2-}(aq) + H^+(aq) & pK_{a2} = 10.3 \\ & The pH of my "solution" will be \end{aligned}$$

- A. around 3
- B. around 6
- C. around 8
- D. around 10

Principles of Chemistry II