
## Today

Voltage and Equilibria

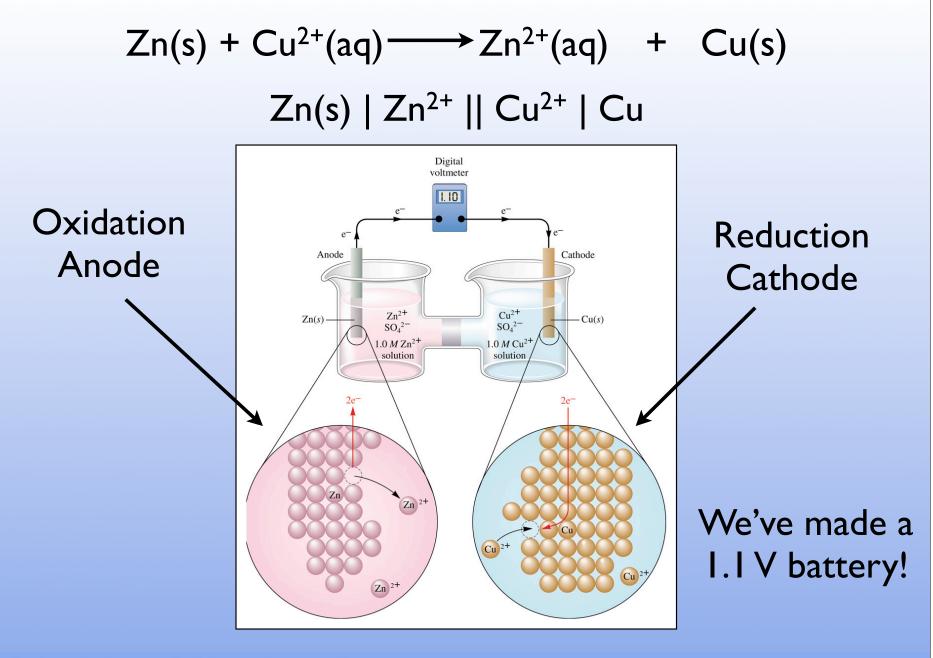
**Principles of Chemistry II** 

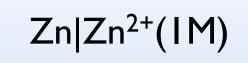


The voltage depends on the concentrations (we've all had dead batteries)



Mix up "standard" concentrations I M Zn<sup>2+</sup> and I M Cu<sup>2+</sup> (note this is very concentrated) Principles of Chemistry II


Let's look at an actual cell


**Principles of Chemistry II** 

On which side of the cell are the electrons at a higher potential energy at these concentrations?

- A. the anode
- B. the cathode
- C. they are the same

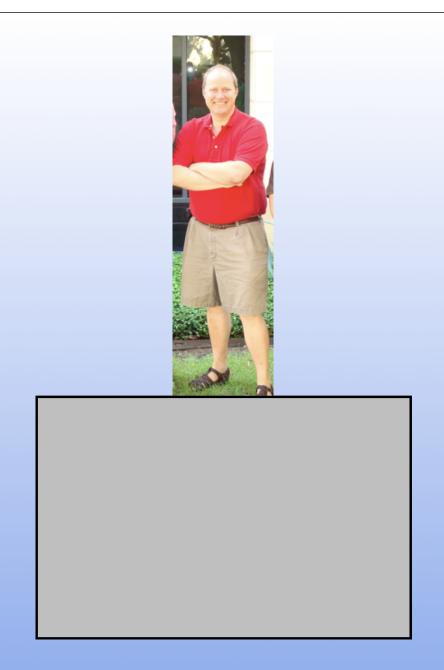
**Principles of Chemistry II** 





# Cu<sup>2+</sup>(IM)|Cu

**Potential Energy** 


**Principles of Chemistry II** 

Now we can measure every possible combination of electrochemical cells!

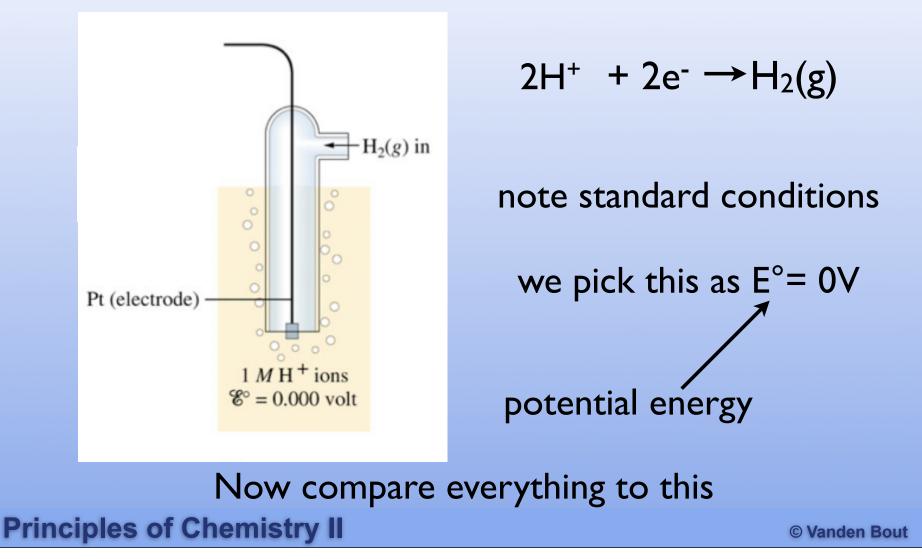
### What if I would like to predict the voltage from a cell for any reaction at standard conditions?

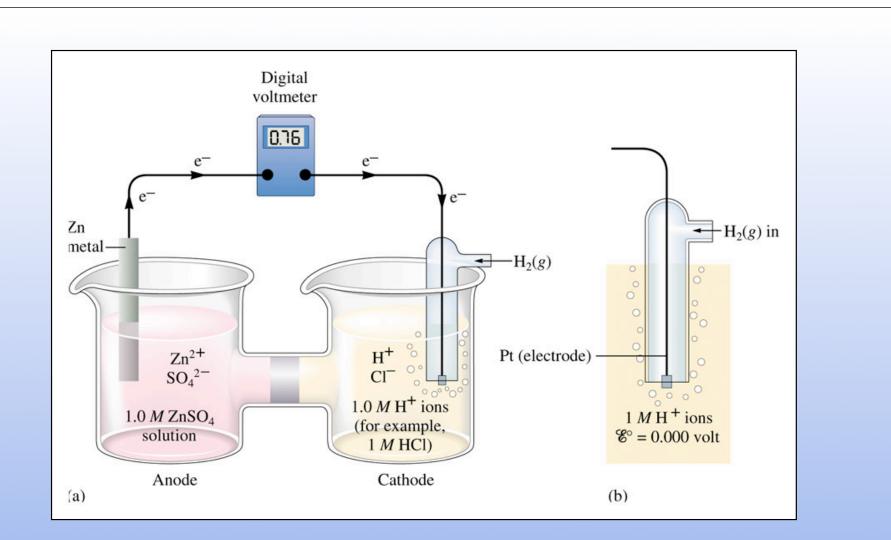
First we need to think about potential energy

**Principles of Chemistry II** 



What is my gravitational potential energy? zero if I am on the ground


But if a hole appears beneath me? then it is no longer zero


Energy is relative!

We pick where zero is

We need to pick a zero potential for electrochemistry

We chose this reaction





So potential for  $Zn \longrightarrow Zn^{2+} + 2e^{-1}$ is 0.76V

**Principles of Chemistry II** 

|    | If the potential for<br>$Zn \longrightarrow Zn^{2+} + 2e^{-}$ is 0.76V<br>what is the potential for<br>$Zn^{2+} + 2e^{-} \longrightarrow Zn$ |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|
| A. | -0.76∨                                                                                                                                       |
| B. | 0.76∨                                                                                                                                        |


- C. 0V
- D. it can't be measured

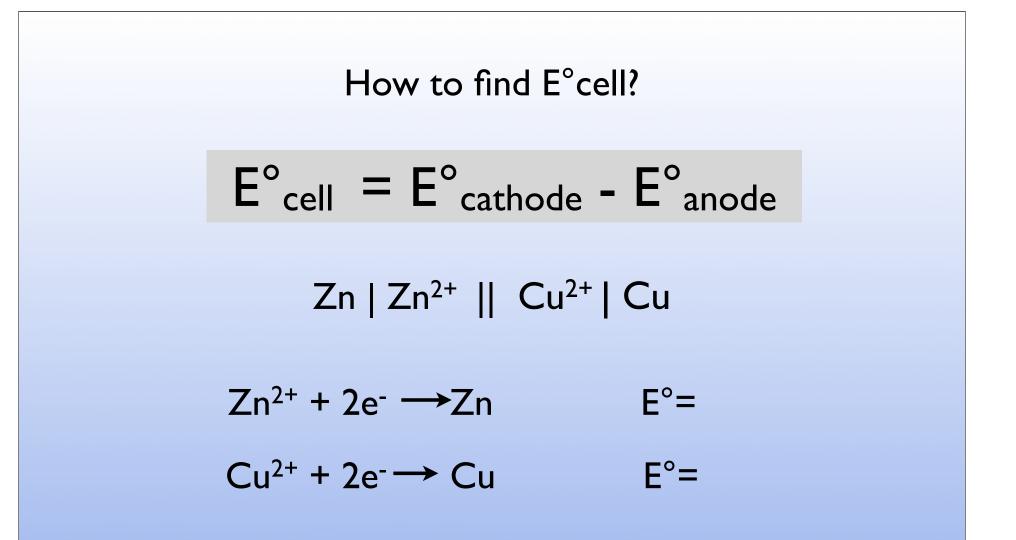
### Write everything as a reduction reaction

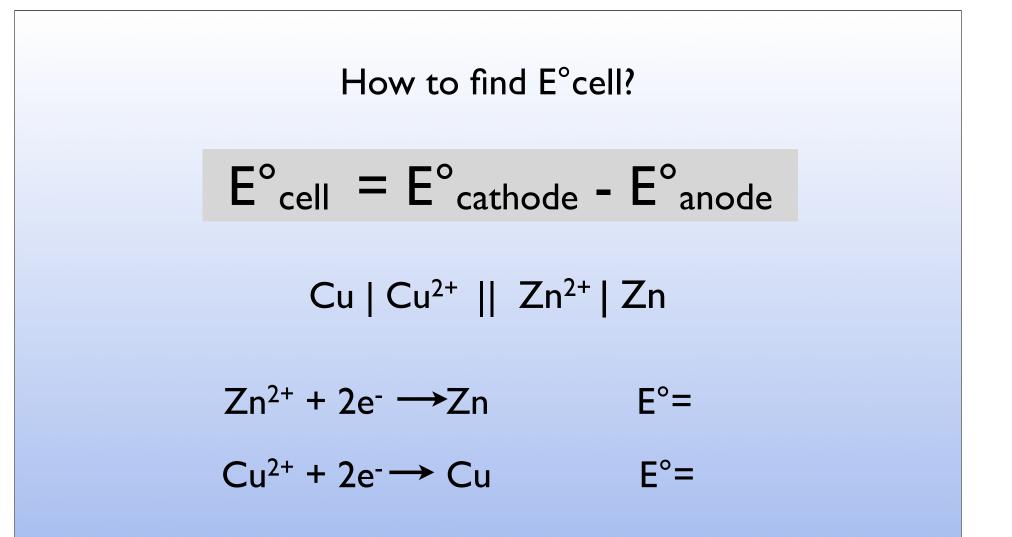
| Half-reaction                                                                                 | €° (V) | Half-reaction                                              | $\mathscr{C}^{\circ}(V)$ |
|-----------------------------------------------------------------------------------------------|--------|------------------------------------------------------------|--------------------------|
| $F_2 + 2e^- \rightarrow 2F^-$                                                                 | 2.87   | $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$                     | 0.40                     |
| $Ag^{2+} + e^- \rightarrow Ag^+$                                                              | 1.99   | $Cu^{2+} + 2e^- \rightarrow Cu$                            | 0.34                     |
| $\mathrm{Co}^{3+} + \mathrm{e}^- \rightarrow \mathrm{Co}^{2+}$                                | 1.82   | $Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$                  | 0.27                     |
| $H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$                                                      | 1.78   | $AgCl + e^- \rightarrow Ag + Cl^-$                         | 0.22                     |
| $Ce^{4+} + e^- \rightarrow Ce^{3+}$                                                           | 1.70   | $SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2O$       | 0.20                     |
| $PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$                                  | 1.69   | $Cu^{2+} + e^- \rightarrow Cu^+$                           | 0.16                     |
| $MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$                                             | 1.68   | $2H^+ + 2e^- \rightarrow H_2$                              | 0.00                     |
| $IO_4^- + 2H^+ + 2e^- \rightarrow IO_3^- + H_2O$                                              | 1.60   | $Fe^{3+} + 3e^- \rightarrow Fe$                            | -0.036                   |
| $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$                                           | 1.51   | $Pb^{2+} + 2e^- \rightarrow Pb$                            | -0.13                    |
| $Au^{3+} + 3e^- \rightarrow Au$                                                               | 1.50   | $\mathrm{Sn}^{2+} + 2\mathrm{e}^- \rightarrow \mathrm{Sn}$ | -0.14                    |
| $PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$                                             | 1.46   | $Ni^{2+} + 2e^- \rightarrow Ni$                            | -0.23                    |
| $Cl_2 + 2e^- \rightarrow 2Cl^-$                                                               | 1.36   | $PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$                 | -0.35                    |
| $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$                                    | 1.33   | $Cd^{2+} + 2e^- \rightarrow Cd$                            | -0.40                    |
| $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$                                                         | 1.23   | $Fe^{2+} + 2e^- \rightarrow Fe$                            | -0.44                    |
| $MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$                                             | 1.21   | $Cr^{3+} + e^- \rightarrow Cr^{2+}$                        | -0.50                    |
| $IO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}I_2 + 3H_2O$                                     | 1.20   | $Cr^{3+} + 3e^- \rightarrow Cr$                            | -0.73                    |
| $Br_2 + 2e^- \rightarrow 2Br^-$                                                               | 1.09   | $Zn^{2+} + 2e^- \rightarrow Zn$                            | -0.76                    |
| $\mathrm{VO_2}^+ + 2\mathrm{H}^+ + \mathrm{e}^- \rightarrow \mathrm{VO}^{2+} + \mathrm{H_2O}$ | 1.00   | $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$                     | -0.83                    |
| $AuCl_4^- + 3e^- \rightarrow Au + 4Cl^-$                                                      | 0.99   | $Mn^{2+} + 2e^- \rightarrow Mn$                            | -1.18                    |
| $NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$                                                 | 0.96   | $Al^{3+} + 3e^- \rightarrow Al$                            | -1.66                    |
| $ClO_2 + e^- \rightarrow ClO_2^-$                                                             | 0.954  | $H_2 + 2e^- \rightarrow 2H^-$                              | -2.23                    |
| $2\mathrm{Hg}^{2+} + 2\mathrm{e}^{-} \rightarrow \mathrm{Hg_{2}}^{2+}$                        | 0.91   | $Mg^{2+} + 2e^- \rightarrow Mg$                            | -2.37                    |
| $Ag^+ + e^- \rightarrow Ag$                                                                   | 0.80   | $La^{3+} + 3e^- \rightarrow La$                            | -2.37                    |
| $\mathrm{Hg_2}^{2+} + 2\mathrm{e}^- \rightarrow 2\mathrm{Hg}$                                 | 0.80   | $Na^+ + e^- \rightarrow Na$                                | -2.71                    |
| $Fe^{3+} + e^- \rightarrow Fe^{2+}$                                                           | 0.77   | $Ca^{2+} + 2e^- \rightarrow Ca$                            | -2.76                    |
| $O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$                                                        | 0.68   | $Ba^{2+} + 2e^- \rightarrow Ba$                            | -2.90                    |
| $MnO_4^- + e^- \rightarrow MnO_4^{2^-}$                                                       | 0.56   | $K^+ + e^- \rightarrow K$                                  | -2.92                    |
| $I_2 + 2e^- \rightarrow 2I^-$                                                                 | 0.54   | $Li^+ + e^- \rightarrow Li$                                | -3.05                    |
| $\overline{Cu^+} + e^- \rightarrow Cu$                                                        | 0.52   |                                                            |                          |

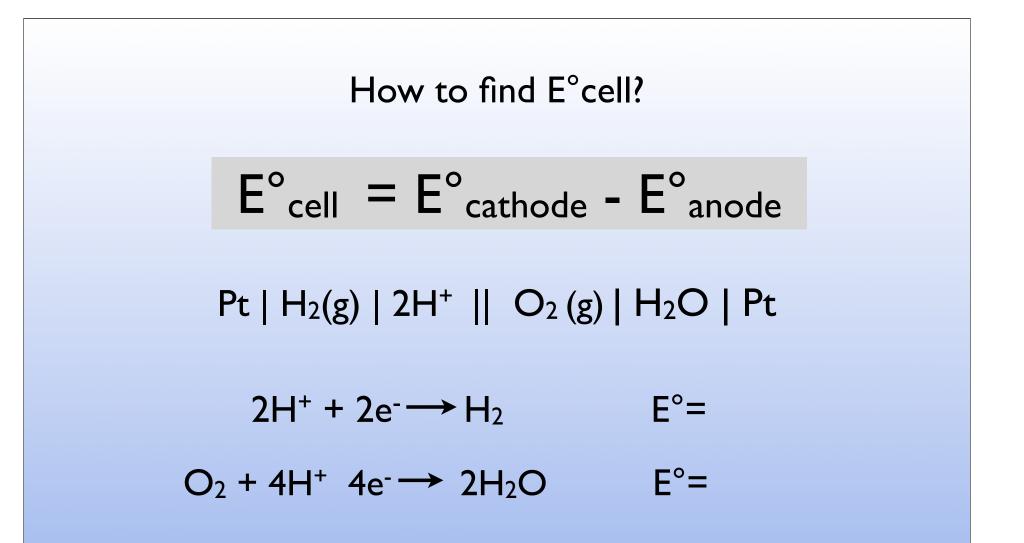
#### TABLE 11.1 Standard Reduction Potentials at 25°C (298 K) for Many Common Half-reactions

| TABLE 20.1 Sta            | andard Reduction Potentials in Water at 25℃                                   |                 |
|---------------------------|-------------------------------------------------------------------------------|-----------------|
| Standard<br>Potential (V) | Reduction Half-Reaction                                                       | Easy to reduce  |
| +2.87                     | $F_2(g) + 2e^- \longrightarrow 2F^-(aq)$                                      | (Strongest      |
| +1.51                     | $MnO_4^{-}(sq) + 8H^+(sq) + 5e^- \longrightarrow Mn^{2+}(sq) + 4H_2O(1)$      |                 |
| +1.36                     | $Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$                                    | oxidizing       |
| +1.33                     | $Cr_2O_7^{2-}(sq) + 14H^+(sq) + 6e^- \longrightarrow 2Cr^{3+}(sq) + 7H_2O(1)$ |                 |
| +1.23                     | $O_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O(J)$                           | agents)         |
| +1.06                     | $Br_2(1) + 2e^- \longrightarrow 2Br^-(sq)$                                    |                 |
| +0.96                     | $NO_3^{-}(aq) + 4H^+(aq) + 3e^- \longrightarrow NO(g) + H_2O(I)$              |                 |
| +0.80                     | $Ag^+(sq) + e^- \longrightarrow Ag(s)$                                        |                 |
| +0.77                     | $Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$                             |                 |
| +0.68                     | $O_2(g) + 2H^+(aq) + 2e^- \longrightarrow H_2O_2(aq)$                         |                 |
| +0.59                     | $MnO_4^{-}(sq) + 2H_2O(1) + 3e^- \longrightarrow MnO_2(s) + 4OH^{-}(sq)$      |                 |
| +0.54                     | $I_2(s) + 2e^- \longrightarrow 2I^-(aq)$                                      |                 |
| +0.40                     | $O_2(g) + 2H_2O(1) + 4e^- \longrightarrow 4OH^-(aq)$                          |                 |
| +0.34                     | $Cu^{2+}(sq) + 2e^{-} \longrightarrow Cu(s)$                                  |                 |
| 0                         | $2H^+(aq) + 2e^- \longrightarrow H_2(g)$                                      |                 |
| -0.28                     | $Ni^{2+}(sq) + 2e^{-} \longrightarrow Ni(s)$                                  | <b>F</b>        |
| -0.44                     | $Fe^{2+}(sq) + 2e^{-} \longrightarrow Fe(s)$                                  | Easy to oxidize |
| -0.76                     | $Zr^{2+}(sq) + 2e^{-} \longrightarrow Zr(s)$                                  | (strongest      |
| -0.83                     | $2H_2O(I) + 2e^- \longrightarrow H_2(g) + 2OH^-(aq)$                          | (strongest      |
| -1.66                     | $Al^{3+}(sq) + 3e^{-} \longrightarrow Al(s)$                                  | reducing        |
| -2.71                     | $Na^+(sq) + e^- \longrightarrow Na(s)$                                        | , Č             |
| -3.05                     | $Li^+(sq) + e^- \longrightarrow Li(s)$                                        | agents)         |




$$E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode}$$


Use the reduction potential for both half reactions


#### The number of electrons does not matter

only the half-reactions

**Principles of Chemistry II** 



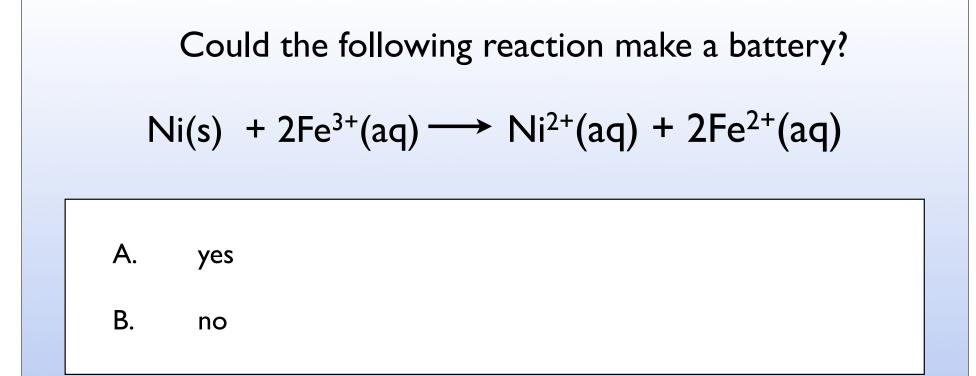




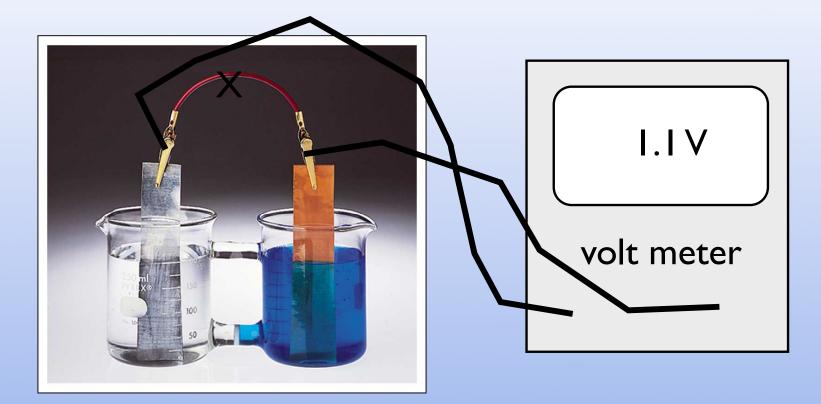
What is cell notation for the following reaction? Ni(s) + 2Fe<sup>3+</sup>(aq)  $\longrightarrow$  Ni<sup>2+</sup>(aq) + 2Fe<sup>2+</sup>(aq)

- A. Ni<sup>2+</sup> | Ni || Fe<sup>2+</sup> | Fe<sup>3+</sup> | Pt
- B. Ni | Ni<sup>2+</sup> || Fe<sup>3+</sup> | Fe<sup>2+</sup> | Pt
- C. Ni | Ni<sup>2+</sup> || Fe<sup>2+</sup> | Fe<sup>3+</sup> | Pt
- D. Ni | Ni<sup>2+</sup> || 2Fe<sup>2+</sup> | 2Fe<sup>3+</sup> | Pt
- E. Ni | Ni<sup>2+</sup> || 2Fe<sup>3+</sup> | 2Fe<sup>2+</sup> | Pt

**Principles of Chemistry II** 


#### What is E° for the following reaction?

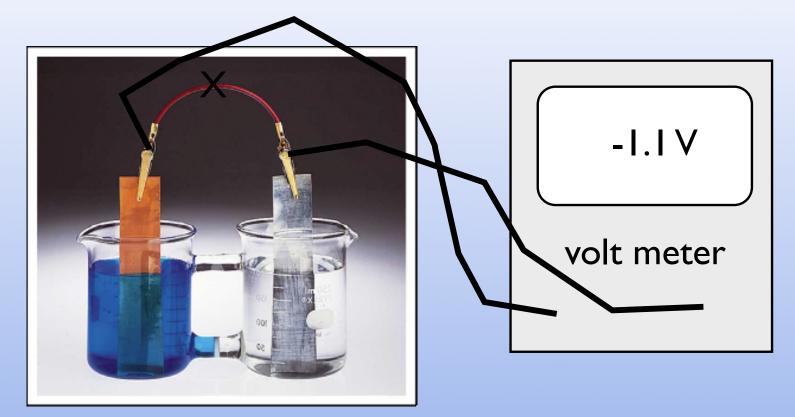
Ni(s) + 2Fe<sup>3+</sup>(aq)  $\rightarrow$  Ni<sup>2+</sup>(aq) + 2Fe<sup>2+</sup>(aq)


- A. +0.54∨
  B. +0.77∨
  C. +1.0∨
- D. -1.0V

E. -0.54 V

**Principles of Chemistry II** 




# We'll look at standard concentrations Zn | Zn<sup>2+</sup> || Cu<sup>2+</sup> | Cu



### I M Zn<sup>2+</sup> (aq) and I M Cu<sup>2+</sup> (aq) (note this is ridiculously concentrated)

**Principles of Chemistry II** 

# We'll look at standard concentrations Cu | Cu<sup>2+</sup> || Zn<sup>2+</sup> | Zn



I M Zn<sup>2+</sup> (aq) and I M Cu<sup>2+</sup> (aq) (note this is ridiculously concentrated)

**Principles of Chemistry II** 

What is voltage for the following reaction at equilibrium?

$$Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$$

- A. I.IV
  B. zero
  C. -I.IV
  D. something
  - something between 0 and 1.1 V

#### **Principles of Chemistry II**

Relationship between E and  $\Delta G$ 

ΔG is energy E is electrical potential

Electric work (energy) is -charge x potential

work = -charge x E

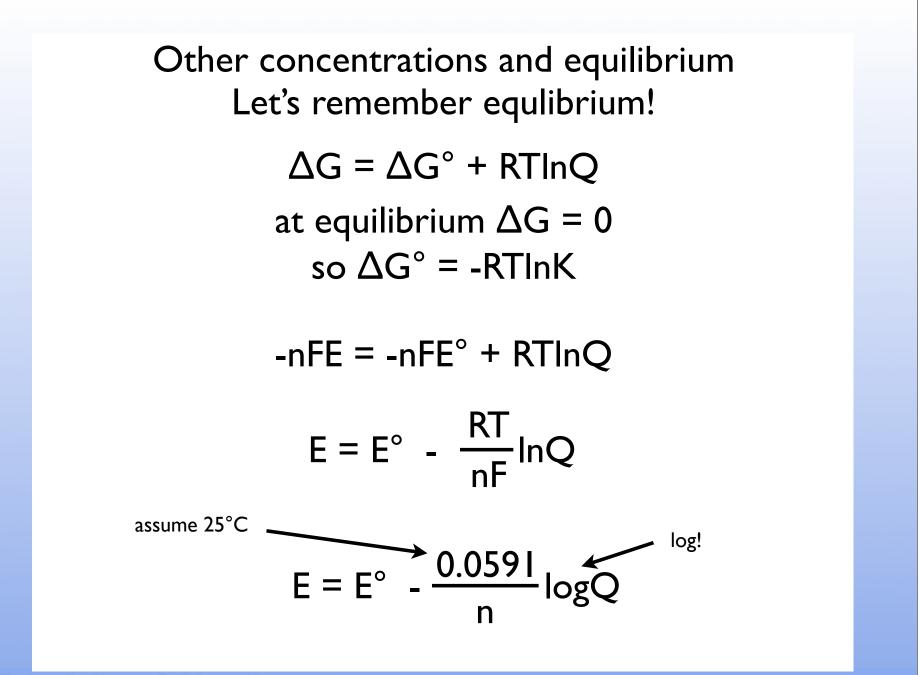
 $\Delta G = work_{max}$  $\Delta G = - charge \times E_{max}$ 

From now on we'll now the Potential we calculate is the theoretical maximum Real world never actually that good

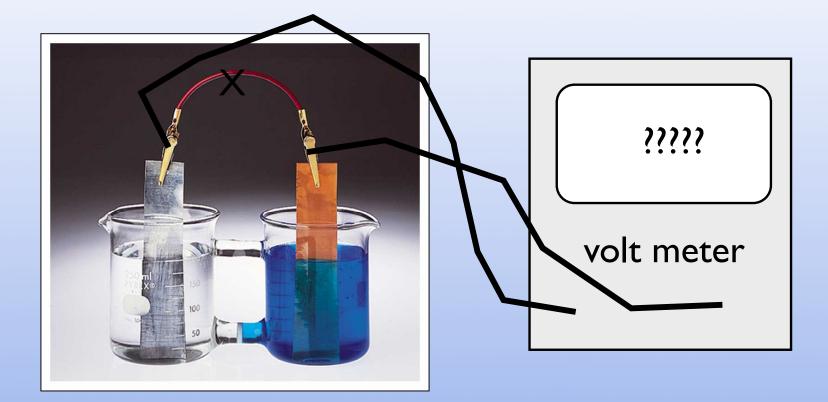
**Principles of Chemistry II** 

Relationship between E and  $\Delta G$ 

 $\Delta G = - charge \times E$ 

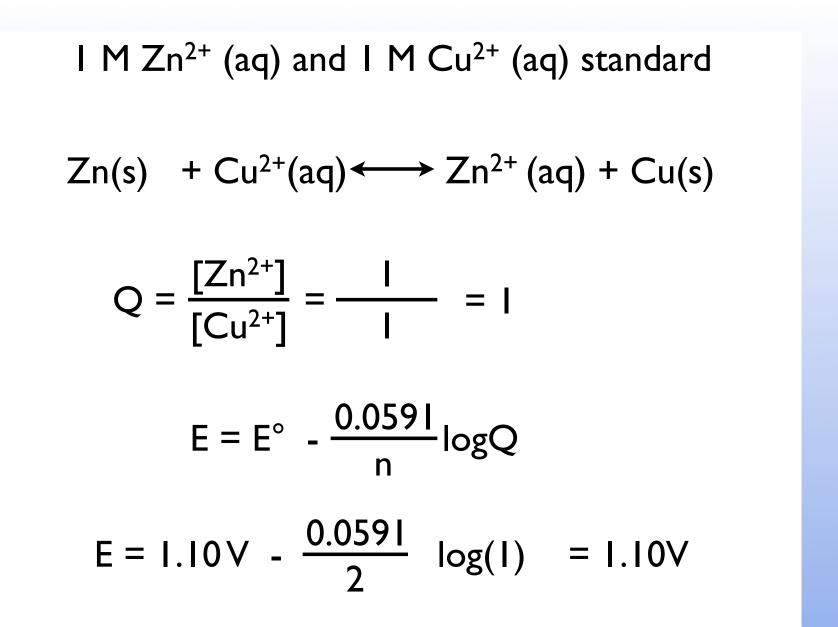

What is the charge?

charge =  $n \times F$ 


n is number of moles of electrons (per mole rxn) F is the charge of one mole of electrons F = 96,485 C (Faraday's Constant)

 $\Delta G = - nFE$ 

**Principles of Chemistry II** 




#### What about other concentrations?



### 10<sup>-3</sup> M Zn<sup>2+</sup> (aq) and 10<sup>-1</sup> M Cu<sup>2+</sup> (aq) ???

**Principles of Chemistry II** 



$$10^{-3} \text{ M } Zn^{2+} \text{ (aq) and } 10^{-1} \text{ M } Cu^{2+} \text{ (aq) } ???$$

$$Zn(s) + Cu^{2+}(aq) \longleftrightarrow Zn^{2+} \text{ (aq) } + Cu(s)$$

$$Q = \frac{[Zn^{2+}]}{[Cu^{2+}]} = \frac{(10^{-3})}{(10^{-1})} = 10^{-2}$$

$$E = E^{\circ} - \frac{0.0591}{n} \log Q$$

$$E = 1.10 \text{ V} - \frac{0.0591}{2} \log(10^{-2}) = 1.16 \text{ V}$$

$$E = E^{\circ} - \frac{0.0591}{n} \log Q$$
  
Current will flow until E = 0  
Equilibrium  
$$E^{\circ} = + \frac{0.0591}{n} \log K$$
$$\log K = \frac{nE^{\circ}}{0.0591}$$

What will happen to the voltage if I lower the Zn<sup>2+</sup> concentration?

# $Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$

- A. the voltage will increase
- B. the voltage will decrease
- C. the voltage will stay the same

**Principles of Chemistry II**