Today

Voltage and Equilibria (again) Batteries and Fuel Cells

Electrolytic Cells

Principles of Chemistry II

We'll look at standard concentrations Zn | Zn²⁺ || Cu²⁺ | Cu

I M Zn²⁺ (aq) and I M Cu²⁺ (aq) (note this is ridiculously concentrated)

Principles of Chemistry II

What about other concentrations?

$[Zn^{2+}] \neq IM \text{ and } [Cu^{2+}] \neq IM ???$

Principles of Chemistry II

What is voltage for the following reaction at equilibrium?

$$Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$$

- A. I.IV
 B. zero
 C. -I.IV
 D. something
 - something between 0 and 1.1 V

Principles of Chemistry II

What is voltage for the following reaction if $[Cu^{2+}] = 10^{-4} \text{ M}$ and $[Zn^{2+}] = 1.9 \text{ M}$ $Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$

- A. I.IV
 B. zero
 C. -I.IV
 D. somethic
 - something between 0 and 1.1 V

Principles of Chemistry II

Relationship between E and ΔG

 $\Delta G = - charge \times E$

$\Delta G = - nFE$

Principles of Chemistry II

Other concentrations and equilibrium Let's remember equilbrium!

 $\Delta G = \Delta G^{\circ} + RTInQ$

Principles of Chemistry II

What about other concentrations?

10⁻³ M Zn²⁺ (aq) and 10⁻¹ M Cu²⁺ (aq) ???

Principles of Chemistry II

I M Zn²⁺ (aq) and I M Cu²⁺ (aq) standard Zn(s) + Cu²⁺(aq) \leftrightarrow Zn²⁺ (aq) + Cu(s)

Principles of Chemistry II

I M Zn²⁺ (aq) and I M Cu²⁺ (aq) standard
Zn(s) + Cu²⁺(aq)
$$\iff$$
 Zn²⁺ (aq) + Cu(s)

$$Q = \frac{[Zn^{2+}]}{[Cu^{2+}]} = \frac{1}{1} = 1$$

$$E = E^{\circ} - \frac{0.0591}{n} \log Q$$

$$E = 1.10V - \frac{0.0591}{2} \log(1) = 1.10V$$

Principles of Chemistry II

I0⁻³ M Zn²⁺ (aq) and I0⁻¹ M Cu²⁺ (aq) ??? Zn(s) + Cu²⁺(aq) \longleftrightarrow Zn²⁺ (aq) + Cu(s)

Principles of Chemistry II

I0⁻³ M Zn²⁺ (aq) and I0⁻¹ M Cu²⁺ (aq) ???
Zn(s) + Cu²⁺(aq)
$$\longleftrightarrow$$
 Zn²⁺ (aq) + Cu(s)

$$Q = \frac{[Zn^{2+}]}{[Cu^{2+}]} = \frac{(10^{-3})}{(10^{-1})} = 10^{-2}$$

$$E = E^{\circ} - \frac{0.0591}{n} \log Q$$

$$E = 1.10V - \frac{0.0591}{2} \log(10^{-2}) = 1.16V$$

Principles of Chemistry II

$$E = E^{\circ} - \frac{0.0591}{n} \log Q$$

Current will flow until E = 0
Equilibrium
$$E^{\circ} = + \frac{0.0591}{n} \log K$$
$$\log K = \frac{nE^{\circ}}{0.0591}$$

Principles of Chemistry II

What will happen to the voltage if I lower the Zn²⁺ concentration?

$Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$

- A. the voltage will increase
- B. the voltage will decrease
- C. the voltage will stay the same

Principles of Chemistry II

10⁻⁴ M Zn²⁺ (aq) and 1 M Zn²⁺ (aq) ???

Principles of Chemistry II

Does this cell have a non-zero voltage?

$Zn | Zn^{2+} (I0^{-4} M) || Zn^{2+} (I M) | Zn$

Principles of Chemistry II

Which side has the lower free energy?

$Zn | Zn^{2+} (I0^{-4} M) || Zn^{2+} (I M) | Zn$

- A. I M solution
- B. 10⁻⁴ M solution
- C. they are the same (its at equilibrium)

Will electrons flow spontaneously to the cathode?

 $Zn | Zn^{2+} (I0^{-4} M) || Zn^{2+} (IM) | Zn$

Principles of Chemistry II

Will the potential for this cell be positive? Zn | Zn^{2+} (10⁻⁴ M) || Zn^{2+} (1 M) | Zn

A. yes,
$$E > 0$$

C. it is the same reaction so E = 0

Principles of Chemistry II

$Zn | Zn^{2+} (I0^{-4} M) || Zn^{2+} (IM) | Zn$

Principles of Chemistry II

 $Zn | Zn^{2+} (I0^{-4} M) || Zn^{2+} (IM) | Zn$ Same reaction! $E^{\circ} = 0V$

$$Q = \frac{[Zn^{2+}]_{anode}}{[Zn^{2+}]_{cathode}} = \frac{10^{-4}}{1} = 10^{-4}$$

$$E = E^{\circ} - \frac{0.0591}{n} \log Q$$

$$E = 0V - \frac{0.0591}{2} \log(10^{-4}) = 0.118V$$

each factor of ten will be another 0.0591V

Principles of Chemistry II

Take home message!

Voltage is a direct measure of the free energy

Therefore it is a direct measure of Q!

If you set up a system where one half of the cell is known, the the other half can be used as a sensor! Let's look at this reaction

 $2H_2O(I) \longrightarrow 2H_2(g) + O_2(g)$

Anode (oxidation): $2H_2O(l) \rightarrow O_2(g) + 4H^+(aq) + 4e^-$ Cathode (reduction): $2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$

 $E^{\circ}_{cell} = -2.06 V$

Not spontaneous, but if we apply a voltage > 2.06 we can force the reaction to go!

Principles of Chemistry II

Principles of Chemistry II

You reduce H⁺ to H₂ in an electrochemical cell. Your cell has a current of I Amp for 10 minutes What is the total charge that is passed through the cell?

A.	ΙC	
B.	10 C	
C.	600 C	
П	6000 C	

Principles of Chemistry II

You reduce H^+ to H_2 in an electrochemical cell. Your cell has a current of I Amp for 10 minutes How many moles of electrons pass through the cell?

- A. 600 C / F
- B. 600 C x F
- C. IA x F

Principles of Chemistry II

You reduce H^+ to H_2 in an electrochemical cell. The number of moles of electrons that pass through the cell is 6.2 x 10⁻³. How many moles of H_2 are formed?

$$2H^+ + 2e^- ----> H_2(g)$$

B.	3.I	X	10 ⁻³
----	-----	---	------------------

C. I.2 x 10⁻²

Principles of Chemistry II

You reduce H⁺ to H₂ in an electrochemical cell. Your cell has a current of I Amp for 10 minutes. How many moles of H₂ are formed?

 $2H^+ + 2e^- ----> H_2(g)$

B.	3.I	X	10 -3
----	-----	---	--------------

C. I.2 x 10⁻²

Principles of Chemistry II

This is the most impractical I.IV battery

How can we get rid of the beaker and salt bridge?

Principles of Chemistry II

What is the voltage when 90% of the Cu^{2+} has reacted?

Zn(s) + Cu²⁺(aq)
$$\iff$$
 Zn²⁺ (aq) + Cu(s)
I.9 M Zn²⁺ (aq) and 0.1 M Cu²⁺ (aq) ???

$$Q = \frac{[Zn^{2+}]}{[Cu^{2+}]} = \frac{(1.9)}{(.1)} = 19$$

$$E = E^{\circ} - \frac{0.0591}{n} \log Q$$

$$E = 1.10V - \frac{0.0591}{2} \log(19) = 1.06V$$

Principles of Chemistry II

Issue to deal with

Beakers keep the oxidation and reduction reactions physically separated from one another

Salt bridge connect the circuits by allowing ions to flow between the two regions

No Beakers is easy. Put chemical into a porous medium

How to connect them?

Use a common electrolyte Same chemical is common to both the oxidation and reduction

Principles of Chemistry II

Lead Acid Battery

Anode

reduction potential

 $Pb(s) + HSO_4^-(aq) + H_2O(l) \leftrightarrow PbSO_4(s) + H_3O^+(aq) + 2e^- \quad E^\circ = -0.356V$

 $PbO_{2}(s) + 3H_{3}O^{+}(aq) + HSO_{4}^{-}(aq) + 2e^{-} \leftrightarrow PbSO_{4}(s) + 5H_{2}O(l) \quad \epsilon^{o} = 1.685 V$

Cathode

 $E^{\circ}_{cell} = 1.685 - (-.356) = 2.041 V$

Everything in liquid Therefore the reaction can be fast!

Fast = High current

Principles of Chemistry II

Batteries without liquids

Dry Cell

 $Zn(s) \rightarrow Zn^{2+}(aq) + 2 e^{-}$

 $2MnO_2(s) + 2 H^+(aq) + 2 e^- \rightarrow Mn_2O_3(s) + H_2O(l)$

The Key Solid Electrolyte Paste NH4⁺, NH3, H2O

Carbon makes electrical connection

Very slow reaction. Constant V. Very low current

Principles of Chemistry II

Principles of Chemistry II

