Today Kinetics Rate Laws

Finding the order of a reaction

Integrated Rate Laws What is the concentration as a function of time?

Principles of Chemistry II

we are looking only at the rate of the "forward" reaction This depends only on the concentration of the reactants

Method of Initial Rates

 $A + 2B \longrightarrow C$

Experiment	[A]。	[B]。	initial rate (M s ⁻¹)
I	0.IM	0.IM	2.73
2	0.15M	0.IM	6.14
3	0.IM	0.2M	2.74

The reaction is what order in A? - work out on doc cam

Principles of Chemistry II

Method of Initial Rates

Α	+ 2B	\longrightarrow	С
Experiment	[A] ₀	[B] ₀	initial rate (M s ⁻¹)
I	0.IM	0.IM	2.73
2	0.15M	0.IM	6.14
3	0.IM	0.2M	2.74

the reaction is what order in B?

A.	0	
B.	Ι	
C.	1.5	
D.	2	

Method of Initial Rates

		Α	+ 2B	\longrightarrow	С	
	Ex	periment	[A] ₀	[B] ₀	initial rate (M s ⁻¹)	
		1	0.IM	0.IM	2.73	
		2	0.15M	0.IM	6.14	
V	vnat is k!	3	0.IM	0.2M	2.74	
	A.	273	M ⁻¹ s ⁻¹			
	B.	27.3	s ⁻¹			
	C.	61.4	⊦ s⁻¹			
	D.	614	M ⁻¹ s ⁻¹			
	E.	6.14	M s ⁻¹			

Integrated rate laws (the concentration as a function of time)

We need a situation in which either

I. The rate law depends on only one reactant

 II. Only one reactant is changing much in concentrations, so effectively only one concentration is changing

Principles of Chemistry II

$CO(g) + H_2O(g) \longleftrightarrow CO_2(g) + H_2(g)$

The rate law for this reaction is rate = k[H₂O][CO]

it is first order in H₂O and first order in CO

Principles of Chemistry II

$CO(g) + H_2O(g) \longleftrightarrow CO_2(g) + H_2(g)$

What if we started with a whole lot of H₂O compared to CO?

The $[H_2O] \sim \text{constant}$ (since there is so much of it)

Now we can combine the [H₂O] with k (since both are constant)

and write the rate law as rate = k[H₂O][CO] = k'[CO]

we now say the reaction is pseudo-first order in CO Principles of Chemistry II Integrated rate laws (the concentration as a function of time)

We need a situation in which either

I. The rate law depends on only one reactant for example it is first order with respect to A

II. Only one reactant is changing much in concentrations, so effectively only one concentration is changing

for example it is pseudo first order with respect to A

First Order

The rate is proportional to the concentration of only one reactant. We'll call it A

then some calculus

Principles of Chemistry II

First Order

$[A] = [A]_{\circ}e^{-akt}$ $ln[A] = -akt + ln[A]_{\circ}$

So if you plot ln[A] vs time you get a straight line with a slope of -ak

Principles of Chemistry II

Principles of Chemistry II

Half life

TABLE 15.3 Concentration/Time Data for the Reaction $2N_2O_5(soln)$ $\rightarrow 4NO_2(soln) + O_2(g)$ (at 45°C)

$[N_2O_5]$ (mol/L)	Time (s)
1.00	0
0.88	200
0.78	400
0.69	600
0.61	800
0.54	1000
0.48	1200
0.43	1400
0.38	1600
0.34	1800
0.30	2000

The half-life is the time at which half the initial concentration remains.

What is the approximate halflife for the reaction at the left?

A. 200 s	
B. 400 s	
C. 1100 s	
D. 1600 s	

Zero Order

The rate is independent of the concentration of our reactant A

then some calculus

Principles of Chemistry II

Zeroth Order

$[A] = -akt + [A]_{\circ}$

Plot of [A] vs time yields a straight line with a slope of -ak

Principles of Chemistry II

Principles of Chemistry II

Second Order

The rate is dependent of the concentration of our reactant A squared

then some calculus

Principles of Chemistry II

Second Order

$I/[A] = akt + I/[A]_{\circ}$

So if you plot I/[A] vs time you get a straight line with a slope of ak

Principles of Chemistry II

Graphically determining the overall order of a reaction

Principles of Chemistry II

		Order		
	Zero	First	Second	
Rate law	Rate = k	Rate = k [A]	Rate = $k[A]^2$	
Integrated rate law	$[\mathbf{A}] = -kt + [\mathbf{A}]_0$	$\ln[\mathbf{A}] = -kt + \ln[\mathbf{A}]_0$	$\frac{1}{[\mathbf{A}]} = kt + \frac{1}{[\mathbf{A}]_0}$	
Plot needed to give a straight line	[A] versus t	ln[A] versus t	$\frac{1}{[A]}$ versus t	
Relationship of rate constant to the slope of straight line	Slope = $-k$	Slope = $-k$	Slope = k	
Half-life	$t_{1/2} = \frac{[A]_0}{2k}$	$t_{1/2} = \frac{0.693}{k}$	$t_{1/2} = \frac{1}{k[A]_0}$	

TABLE 15.6 Summary of the Kinetics for Reactions of the Type $aA \longrightarrow$ Products That Are Zero, First, or Second Order in [A]

Principles of Chemistry II

Half Life

Time after which half the material has reacted

Important for first order reactions as it is independent of the concentration

$t_{1/2} = \ln 2/k = 0.693/k$

Principles of Chemistry II

Which of the following is a plot of the concentration of a reactant that is first order?

Principles of Chemistry II

Which of the following is a plot of the concentration of a reactant that is zeroth order?

Principles of Chemistry II