Chemical Equilibria

Why do we care?!!

Put stuff in a beaker and what do you get?

We can use thermodynamics to predict the molecular concentrations at equilibrium (very powerful!)

What about the opposite reaction?

$$2H_2(g) + O_2(g) \longleftrightarrow 2H_2O(g)$$

$$\Delta_r G^\circ = -113.4 \text{ kJ mol}^{-1}$$

ALL P

Does everything go to equilibrium as predicted?

What happens if you mix H₂ and O₂ at 298K?

- A. The explode and form water
- B. They explode and form hydrogen peroxide (H₂O₂)

NEED A MATCH

Why didn't I get to equilibrium?

Kinetics

Other Reactions

$$2C + O_2 \rightarrow 2CO$$

$$OR$$

$$C + O_2 \rightarrow CO_2$$

$$NRISE BOTH$$

Chemical Equilibria

Why do we care?!!

Things might not get to equilibrium but they never move away from it

Equilibrium does not depend on starting conditions

TABLE 6.1 Results of Three Experiments for the Reaction $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$

Experiment	Initial Concentrations	Equilibrium Concentrations	$K = \frac{[NH_3]^2}{[N_2][H_2]^3}$
I	$[N_2]_0 = 1.000 M$ $[H_2]_0 = 1.000 M$ $[NH_3]_0 = 0$	$[N_2] = 0.921 M$ $[H_2] = 0.763 M$ $[NH_3] = 0.157 M$	$K = 6.02 \times 10^{-2} \text{ L}^2/\text{mol}^2$
II	$[N_2]_0 = 0$ $[H_2]_0 = 0$ $[NH_3]_0 = 1.000 M$	$[N_2] = 0.399 M$ $[H_2] = 1.197 M$ $[NH_3] = 0.203 M$	$K = 6.02 \times 10^{-2} \mathrm{L}^2/\mathrm{mol}^2$
III	$[N_2]_0 = 2.00 M$ $[H_2]_0 = 1.00 M$ $[NH_3]_0 = 3.00 M$	$[N_2] = 2.39 M$ $[H_2] = 2.77 M$ $[NH_3] = 1.82 M$	$K = 6.02 \times 10^{-2} \text{ L}^2/\text{mol}^2$

guro Copyright Houghton Mifflin Company. All rights reserved

Each equilibrium has different concentrations, but the same value for Kc

A convention to keep things straight

we'll be doing a lot of aqueous problems

C denote concentrations initially

[] denote concentrations at equilibrium

Reaction
$$3H_2(g) + N_2(g) \longleftrightarrow 2NH_3(g)$$

Initial C_{H_2} C_{N_2} $C_{N_1 + 2}$

Change $-3x$ $-x$ $+2x$

Equilibrium C_{H_2} C_{N_2} C_{N_3} C_{N

Really Easy problems

At equilibrium you find

$$[H_2] = .1 \text{ M}, [N_2] = 0.2 \text{ M}, \text{ and } [NH_3] = .2M$$

$$K = \frac{[NH_3]^2}{[H_2]^3[N_2]} = \frac{(.2)^3}{(.1)^3(.2)} = 200$$

Reaction $3H_2(g) + N_2(g) \longleftrightarrow 2NH_3(g)$

Initial

Change

Equilibrium

.2

.2 -

Given K = 200 and Fairly Easy problem $[H_2] = .2 M, [N_2] = 0.4 M, and C_{NH3} = .1 M$ fill in the rest 2NH3(g) $3H_2(g) + N_2(g)$ Reaction Initial Change Equilibrium

© Vanden Bout

Principles of Chemistry II

Typical problem

Given K = 200 and $C_{H2} = .2$ M, $N_2 = 0.2$ M what are the concentrations at equilibrium

Reaction	$3H_2(g) + N_2(g) \longleftrightarrow 2NH_3(g)$				
Initial	. 2_	. 2_			
Change	-3x	- X	+Z _X		
	2-3x	·5 - ×	+ 2x		
- K					

© Vanden Bout

Principles of Chemistry II

$$= \frac{\left(2x\right)^{2}}{\left(2-3x\right)^{3}\left(2-x\right)} = 200$$

$$= \frac{\left(2-3x\right)^{3}\left(2-x\right)}{\left(2-3x\right)^{3}\left(2-x\right)} = 200$$

$$= \frac{\left(2-3x\right)^{3}\left(2-x\right)}{\left(2-3x\right)^{3}\left(2-x\right)} = 200$$

$$= \frac{\left(2-3x\right)^{3}\left(2-x\right)}{\left(2-3x\right)^{3}\left(2-x\right)} = 200$$
Reaction $3H_{2}(g) + N_{2}(g) \leftrightarrow 2NH_{3}(g)$
Initial $2 - 2 = 0$
Change $-3x - x + 2x$
Equilibrium $2-3x - 2 + 2x$

Principles of Chemistry II

© Vanden Bout

I thought you said we need to use K_p for gases and K_c for solutions?

Principles of Chemistry II

$$K_{c} = \frac{\left[N_{2}O_{4}\right]}{\left[N_{2}O_{4}\right]^{2}} K_{p} = \frac{\left[N_{2}O_{4}\right]}{\left[N_{2}O_{4}\right]} K_{p} = \frac{\left[N_{2}O_{4}\right]$$

© Vanden Bout

Relating K_p and K_c

$$2NO_2(g) \longrightarrow N_2O_4(g)$$

$$K_{p} = \frac{P_{N2O4}}{P_{NO2}^{2}} \left[\frac{[N_{2}O_{4}]RT}{[NO_{2}]^{2}(RT)^{2}} = \frac{1}{R} \left[\frac{1}{R} \frac{1}{R} \right] \left[\frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \right] \left[\frac{1}{R} \frac{1}{R}$$

In general
$$K_P = K_c(RT)^{\Delta n}$$

Time out for activities

That is what we are actually putting into the equilibrium constant

Free Energy
Changes with P

Compound in solution

Free Energy
Changes with
Concentration

What about the activity of a pure liquid or solid?

The pure compound is the reference state!

Pure solids and liquids "don't show up" in the equilibrium constant (they are there, they are just always = 1) What is the equilibrium constant for this reaction?

$$K = \frac{\prod_{1 \ge 0} (I)}{\prod_{2 \ge 0} (I)} + \prod_{2 \ge 0} \frac{1}{\prod_{2 \ge 0} (I)} = \frac{\prod_{1 \le 0} (I)}{\prod_{2 \ge 0} (I)} + \frac{\prod_{2 \le 0} (I)}{\prod_{2 \ge 0} (I)} = \frac{\prod_{2 \le 0} (I)}{\prod_{2 \le 0} (I)} + \frac{\prod_{2 \le 0} (I)}{\prod_{2 \le 0} (I)} = \frac{\prod_{2 \le 0} (I)}{\prod_{2 \le 0} (I)} + \frac{\prod_{2 \le 0} (I)}{\prod_{2 \le 0} (I)} = \frac{$$

Equilibria with more than one phase are called Heterogeneous Equilibria

For the following reaction $\Delta_R G^\circ = +740 \text{ kJ mol}^{-1}$ at 298K In air will I form any solid iron?

$$Fe_2O_3(s) \longrightarrow 2Fe(s) + (3/2)O_2(g)$$

- A. all the iron oxide will convert to iron
- B. about half of the iron oxide will convert to iron
- C. a very small amount of the iron oxide will convert to iron
- D. not a single atom of iron will form

$$\frac{1}{100} = .2 ztm$$

TODUK

For the following reaction $\Delta_R G^\circ = +740 \text{ kJ mol}^{-1}$ at 298K In air will I form any solid iron?

$$Fe_2O_3(s) \longrightarrow 2Fe(s) + (3/2)O_2(g)$$

$$K = \exp[-740,000/(8.314)(298)] = 2 \times 10^{-130}$$

What is equilibrium good for?

Fendrick et al. Osteopathic Medicine and Primary Care 2008 2:2 doi:10.1186/1750-4732-2-2

Drug Binding How "strongly" should it bind to work?

Drug + Protein ← → Drug-Protein Complex

Do an experiment Measure K

For ibuprofin binding to the COX channel $K \sim 10^8$

If we want 100x more complexed protein than free protein what concentration of drug do we need?

A.
$$10^{-8} \text{ M}$$

B. 10^{-6} M

C. 10^{-4} M

D. 10^{-2} M
 $K = \frac{\text{[complex]} \text{ [drug][protein]}}{\text{[drug]}}$
 $K = \frac{\text{[complex]} \text{ [drug][protein]}}{\text{[drug]}}$

How much is that? [(3 mpl =) < \ []

Person is 50 kg = 50 L of water

MW of ibuprofin is ~200 g mol⁻¹

$$= 10 mg$$

For the following reaction what is the change value for H₂O?

$$2C_2H_6(g) + 7O_2(g) \longrightarrow 4CO_2(g) + 6H_2O(g)$$

- R C_2H_6 O_2 CO_2 H_2O
- I I.0 I.4 I.8 0
- C -2x ? ?

For the following reaction what is the equilibrium value for CO₂?

$$2C_2H_6(g) + 7O_2(g) \longrightarrow 4CO_2(g) + 6H_2O(g)$$

- R C_2H_6 O_2 CO_2 H_2O
- I I.0 I.4 I.8 0
- C -2x ? ?

- A. 1.8 2x
- B. 1.8 + 2x
- C. 1.8 + 4x
- D. 1.0 + 6x