Polyprotic Acids

More than one acid/base group

Monoprotic Acid Nitric Acid

Polyprotic Acid Phosphoric Acid

Polyprotic Acids

Acids that have more than one proton to lose
Now we need to keep track of all the "forms" of the acid

$$
\text { Monoprotic } \quad \mathrm{HA}, \mathrm{~A}^{-}
$$

Diprotic $\mathrm{H}_{2} \mathrm{~A}, \mathrm{HA}^{-}, \mathrm{A}^{2-}$
Triprotic $\mathrm{H}_{3} \mathrm{~A}, \mathrm{H}_{2} \mathrm{~A}$-, $\mathrm{HA}^{2-}, \mathrm{A}^{3-}$

Polyprotic Acid
 Phosphoric Acid

Principles of Chemistry II

$$
\begin{gathered}
\text { For example } \\
\text { Sulfuric Acid } \\
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longleftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq}) \\
\mathrm{HSO}_{4}^{-}(\mathrm{aq}) \longleftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})
\end{gathered} \mathrm{K}_{\mathrm{a} 1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HSO}_{4}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]}=10^{3} \quad \begin{aligned}
& \text { Equilibrium for the first } \\
& \text { proton coming "off" }
\end{aligned}
$$

Key Question

What is in solution!
$\mathrm{H}_{2} \mathrm{~A}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HA}^{-}$(aq) $\mathrm{K}_{\underline{a 1}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HA}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]}$

we'll reduce all such problems to I or 2 major forms of the acid.

First figure out which ones will be in solution

Citric Acid

Citric Acid

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a} 1}=7.4 \times 10^{-4} \\
& \mathrm{~K}_{\mathrm{a} 2}=1.7 \times 10^{-5} \\
& \mathrm{~K}_{\mathrm{a} 3}=4.0 \times 10^{-7}
\end{aligned}
$$

What is the pH of IM Citric Acid? Imagine that it was monoprotic

$$
\begin{aligned}
& \text { Weak Acid } K_{a l}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{H}_{2} \mathrm{~A}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{~A}\right]}=\frac{(x)(x)}{\mathrm{Ca-x}}=\frac{(x)(x)}{\mathrm{Ca}} \\
& {\left[\mathrm{H}^{+}\right]=x=\sqrt{\mathrm{K}_{\mathrm{a}} \mathrm{C}_{\mathrm{a}}}=\sqrt{\left(7.4 \times 10^{-4}\right)(\mathrm{I})}=0.027}
\end{aligned}
$$

$$
\mathrm{K}_{\mathrm{a} 2}=1.7 \times 10^{-5}
$$

Assuming that $\left[\mathrm{H}^{+}\right]=.027$ what is the ratio of deprotonated to protonated for the second proton?

$$
\mathrm{K}_{\mathrm{a} 2}=1.7 \times 10^{-5}
$$

Assuming that $\left[\mathrm{H}^{+}\right]=.027$ what is the ratio of deprotonated to protonated for the second proton?

$$
\mathrm{K}_{\mathrm{a} 2}=1.7 \times 10^{-5}
$$

Assuming that $\left[\mathrm{H}^{+}\right]=.027$ what is the ratio of deprotonated to protonated for the second proton?

$$
\mathrm{K}_{\mathrm{a} 2}=\left[\mathrm{H}^{+}\right] \frac{\left[\mathrm{HA}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}^{-}\right]} \quad \frac{\left[\mathrm{HA}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}^{-}\right]}=\frac{\mathrm{K}_{\mathrm{a} 2}}{\left[\mathrm{H}^{+}\right]}=\frac{1.7 \times 10^{-5}}{0.027}=6.3 \times 10^{-4} \text { This is a very small number }
$$

very very little HA ${ }^{2-}$ the second proton doesn't come off pH is dominated by the first proton equilibrium

So we really only need to consider the $\left[\mathrm{H}^{+}\right]$concentration changing due to K_{a} I

When will the other protons matter?

If we just want the pH of the solution, then it will be dominated by the first K_{a}

We need to consider the others if we are controlling the pH

What do I have in solution at different pH values?
\% in each form

When do I care about the other protons?

When I neutralize the acid.

As you neutralize the first protons, the second will come off,

If I add 0.1 moles of NaOH to 0.05 moles of $\mathrm{H}_{3} \mathrm{PO}_{4}$ what will be the dominant species in solution?

If I add 0.1 moles of NaOH to 0.07 moles of $\mathrm{H}_{3} \mathrm{PO}_{4}$ what will be the dominant species in solution?
A. $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}-$
B. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
C. $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$and $\mathrm{HPO}_{4}{ }^{2-}$
D. $\mathrm{HPO}_{4}{ }^{2-}$
E. $\mathrm{HPO}_{4}{ }^{2-}$ and $\mathrm{PO}_{4}{ }^{3-}$

What is the pH of a solution with $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$?

$$
\begin{aligned}
\mathrm{H}_{3} \mathrm{PO}_{4} \frac{\mathrm{~K}_{\mathrm{a} 1}}{} & =7.1 \times 10^{-3} \\
\underline{\mathrm{~K}_{\mathrm{a} 2}} & =6.3 \times 10^{-8} \\
\underline{\mathrm{~K}_{\mathrm{a} 3}} & =4.5 \times 10^{-13}
\end{aligned}
$$

to simplify we'll use the generic notation $\mathrm{HPO}_{4}{ }^{2-}$ is HA^{2-} HA^{2-} is found in equilibria $2 \& 3$

$$
\mathrm{K}_{\mathrm{a} 2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HA}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}^{-}\right]} \quad \mathrm{K}_{\mathrm{a} 3}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{3-}\right]}{2 \mathrm{H}_{2} \mathrm{~A}^{-} \rightarrow \mathrm{H}^{+}+\mathrm{HA}^{-}}
$$

Species that are both acids and bases are "Amphiprotic"

What is the pH of a solution with $0.5 \mathrm{MHPO}_{4}{ }^{2-}$?

What is the pH of a solution with $0.5 \mathrm{M} \mathrm{HPO}_{4}{ }^{2-}$?

$$
\begin{gathered}
\mathrm{H}_{3} \mathrm{PO}_{4} \mathrm{~K}_{\mathrm{a} 1}=7.1 \times 10^{-3} \\
\mathrm{~K}_{\mathrm{a} 2}=6.3 \times 10^{-8} \\
\mathrm{~K}_{\mathrm{a} 3}=4.5 \times 10^{-13} \\
\mathrm{~K}_{\mathrm{a} 2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HA}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}^{-}\right]} \quad \mathrm{K}_{\mathrm{a} 3}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{3-}\right]}{\left[\mathrm{HA}^{2-}\right]}
\end{gathered}
$$

$$
\left[\mathrm{HA}^{2}\right]=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{3-}\right]}{\mathrm{K}_{\mathrm{a} 3}} \quad \mathrm{~K}_{\mathrm{a} 2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{3}-\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right] \mathrm{K}_{\mathrm{a} 3}}
$$

$$
\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{a} 2} \times \mathrm{K}_{\mathrm{a} 3}}
$$

Titration of a polyprotic

Two equivalence \leftarrow Two proten points
Diprotic $\mathrm{H}_{2} \mathrm{~A}$

Titration of a polyprotic

all $\mathrm{H}_{2} \mathrm{~A}$ weak acid

Titration of a polyprotic

Titration of a polyprotic

> equivalence point I moles $\mathrm{OH}^{-}=$moles $\mathrm{H}_{2} \mathrm{~A}$ All $\mathrm{H}_{2} \mathrm{~A}$ converted to HA^{-}

Titration of a polyprotic

How many equivalence points are in this titration?

Given the following curve estimate $K_{a 2}$ for this unknown acid

A. 10^{-10}
B. 10^{-4}
C. 9×10^{-6}
D. 5×10^{-7}

What is(are) the dominate species in the solution at pH 4 ?

Principles of Chemistry II

How many many protons does this acid have?

Principles of Chemistry II

Given the following curve estimate $\mathrm{K}_{\mathrm{a} 2}$

for this unknown acid

A. 10^{-10}
B. 10^{-4}
C. 9×10^{-6}
D. 5×10^{-7}

Principles of Chemistry II

