Today

Organic

Carbon Chemistry

Organic

You know more than you think already

What you will need
Lewis dot, VSEPR
VB, hybrid orbitals, MO
electronegativity
intermolecular forces

Two hurdles we will deal with

Understanding structures Nomenclature

Ibuprofen

RS)-2-(4-(2-methylpropyl)phenyl)propanoic acid

vitamin C L-ascorbic acid

R)-3,4-dihydroxy-5-((S)-1,2-dihydroxyethyl)furan-2(5H)-one

First Structures

Let's look at a simple molecule.

butane C₄H₁₀

How many carbon atoms does this molecule have?

A. 0

B. 4

C. 5

D. 6

E. 7

How many hyrdogen atoms does this molecule have?

- A. 6
- B. 10
- C. 12

E. 16

How many carbons and hydrogens in the following?

A. 6 C, 14 H

B. 6 C, 15 H

C. 6 C, 16 H

D. 7 C, 15 H

€ 7 C, 14 H

How many carbons and hydrogens in the following?

A. 6 C, 14 H

B. 6 C, 15 H

C. 6 C, 16 H

D. 7 C, 15 H

E. 7 C, 14 H

this is the structure for caffeine

how many hydrogens are not shown?

Step I

Nomenclature

prefix parent suffix

parent is the name of the longest carbon chain. Each length has a given name

I carbon methane 2 carbons ethane 5 carbons pentane

Step I

Nomenclature

prefix parent suffix

suffix is the name of the "functional group"

-ol alcohol

-one ketone

-ane alkane

Step I

Nomenclature

prefix parent suffix

prefix is the name of any substituent groups typically a carbon chain(sidechains)

I carbon methyl 2 carbons ethyl 5 carbons pentyl

Names for parent groups

First lets look at alkanes (essentially no functional group)

All single bonds

suffix is ane

methane butane 5-methyloctane

いる人

Number of carbon atoms	Formula	Name of alkane	Name of alkyl group	Formula
1	CH₄	methane	methyl	CH ₃ -
2	CH ₃ CH ₃	ethane	ethyl	CH ₃ CH ₂ -
3	CH3CH2CH3	propane	propyl	CH ₃ CH ₂ CH ₂ -
4	$CH_3(CH_2)_2CH_3$	butane	butyl	CH ₃ (CH ₂), CH ₂ -
5	CH ₃ (CH ₂) ₃ CH ₃	pentane	pentyl	CH ₃ (CH ₂) ₃ CH ₂ -
6	CH ₃ (CH ₂) ₄ CH ₃	hexane	hexyl	CH ₃ (CH ₂) ₄ CH ₂ -
7	$CH_3(CH_2)_5CH_3$	heptane	heptyl	CH ₃ (CH ₂) ₅ CH ₂ -
8	CH ₃ (CH ₂) ₆ CH ₃	octane	octyl	CH ₃ (CH ₂) ₆ CH ₂ -
9	CH ₃ (CH ₂) ₇ CH ₃	nonane	nonyl	CH ₃ (CH ₂) ₇ CH ₂ -
10	CH ₃ (CH ₂) ₈ CH ₃	decane	decyl	CH ₃ (CH ₂) ₈ CH ₂ -
11	$CH_3(CH_2)_9CH_3$	undecane	undecyl	$CH_{3}(CH_{2})_{9}CH_{2}^{2}$
12	$CH_3(CH_2)_{10}CH_3$	dodecane	dodecyl	$CH_{3}(CH_{2}^{2})_{10}CH_{2}^{2}-$

The following compound is

CH₃CH₂CH₂CH₂CH₂CH₃

- A. butane
- B. isobutane
- C. pentane
- D. hexane
- E. heptane

The following compound is

- A. 3-ethylhexane
- B. 3-ethylpropane
- C. 4-propylhexane
- D. 4-ethylheptane
- E. 3-ethylocatne

Which numbers do I use?

longest main chain lowest possible numbers

The next simplest add a functional group

C=C Double bond

suffix -ene

C=C Triple bond

suffix -yne

The following compound is

- A. 2-hexene
- B. 3-hexene
- C. 4-heptene
- D. 4-hexene
- E. 2 methyl, butene

The following compound is

A. 5-methyl 2-hexene

B. 2-methyl 5-hexene

FOSSINZ #
FUNCTIONS
SCOUP

Nomenclature with functional group

Put the number by before the functional group suffix

Principles of Chemistry II

© Vanden Bout

Name this compound

- A. 2-methyl 5-pentene
- B. 2-methyl 3-hexene
- C. I, I-dimethyl 2-pentene
- D. 5-methyl 3-hexene
- E. 5-methyl 4-hexene

3 is lowest

Possible for

Functional subs

Choose for sigechain

Other side-chains

Halogens
F Fluoro
Cl Chloro
Br Bromo
I lodo

OH group hydroxy

NH₂ group amino

Benzene Ring phenyl

Cyclic Hydrocarbons the carbon chain connects back to itself

cyclobutane

Structural Isomers

hexane (C₆H₁₄)

All Hexanes

Are these the same molecule?

A. Yes

B. No

Structural Isomer (constitutional isomers)

Same atoms and bonds, different bonding pattern

Stereo Isomer (spatial isomers)

Same bonding pattern, different orientations in space

Structural isomers

n-hexane

2 methyl pentane

Stereoisomers

Diastereomer (can interconvert)

cis dichloro ethene trans dichloroethene

Stereoisomers

Enantiomers (chiral molecules)

Molecules cannot be superimposed (left and right hand versions)

Chiral Center (place where the chirality arises)

Carbon (or other atom) with 4 different substituents

vitamin C L-ascorbic acid

R)-3,4-dihydroxy-5-((S)- 1,2-dihydroxyethyl)furan-2(5H)-one

Principles of Chemistry II

Dienes

Two double bonds

5 carbon chain, parent penta

no side chains

two double bonds diene position I and 3

penta-1,3-diene

Alkyne

Carbon Carbon Triple Bond

Suffix -yne

2 methyl hex-3-yne

Other functional groups

Common Ethanol

R-OH

R = Generic representation of the rest of the molecule

functional group

-OH group is an alcohol suffix is -ol

Name this compound

- A. heptan-2-ol
- B. hexan-4-ol
- C. 2-ethylbutan-I-ol
- D. 2-ethylpentan-I-ol
- E. hexan-3-ol

Ketone

carbon double bonded to an oxygen bonded to carbons on either side suffix is -one

Which of the following is a ketone?

- A. A
- B. B
- C. C

butan-3-one

- D. A & B
- E. all three

carbon double bonded to an oxygen bonded to carbon on one side (like a ketone at the end of a chain) suffix is -al

Name this compound

- A. hex-3-enal
- B. hex-3-en-1-al
- C. hex-3-en-6-al
- D. hex-6-al-3-ene
- E. hexene6-3-al

No need to number aldehyde its always at the end

H shown to emphasize the functional group

Carboxylic Acid

carbon double bonded to an oxygen bonded to carbon on one side OH on the other side suffix is -oic acid

Name this compound

- A. methanoic acid
- B. ethanoic acid
- C. propanoic acid
- D. 3 hydroxy propan-2-one
- E. propanol

No need to number carboxylic acid its always at the end

this compound is also commonly known as acetic acid

carbon double bonded to an oxygen bonded to carbon on one side OR on the other side suffix is -oic acid

Name this compound

- A. ethyl butanoate
- B. butyl methanoate
- C. methyl heptanoate
- D. butyl ethanoate
- E. pentyl ethanoate

No need to number ester name the two sides

part with the carboxyl (C=O) is the parent other part is like the side chain

Ether

Diethyl Ether (knocks you out)

carbon oxygen in the middle of the chain suffix is -ether

Treat as two "side chains"

methyl ethyl ether

Primary Amine

R-NH₂

-NH₂ group is an amine suffix is -amine

Amide

carbon double bonded to an oxygen bonded to carbon on one side N on the other side suffix is -amide

Naming amide Treat part with C=O as parent parts on the N as sidechains

pentanamide

N-ethyl-N-methylpentanamide

Amine

Ether

Ketone

Amide

Alcohol

Carboxylic Acid

Ester

Alkene

Important Reaction for Biochemistry

Formation of an Amide

The don't call them functional groups for nothing

Carboxylic Acid

Primary Amine

Amino Acid

Carboxylic End and Amine End
Can react with itself
(or similar molecules) in a chain

Polypeptide

Two distinct ends
N-terminus is an amine
C-terminus is a carboxylic acid

Carboxylic Acid Alcohol

R

OH

H

OR

R

$$+$$

R

Ester + Water

Triglycerides

Fatty Acid (carboxylic acid with long chain)

C₁₂H₂₅COOH

Makes Trigylceride

The three fatty acids can all be the same or different

High levels of triglycerides is linked to build up of plaque in the arteries = heart disease

Alcohol

Alcohol

$$R^{\circ} R' + H_2O$$

Ether + Water

Sugars

Glucose (key factor for sugars lots of hydroxyls)

They can react to form chains of sugars polysaccharide

Celluose

Very long ether chain (pretty much all plant material)

Polysaccharide (Starch)

Sugars, Carbohydrates monosaccharides (one) disaccharides (two) polysaccharides (many)

Principles of Chemistry II

© Vanden Bout

Condensation Reactions (two molecules make one + water)

Carboxylic Acid + Amine = Amide + water

Carboxylic Acid + Alcohol = Ester + water

Alcohol + Alcohol = Ether + water