## LECTURE 21. THERMODYNAMICS—LET'S GET QUANTITATIVE

Today we will examine the quantitative side of thermodynamics, while actually coming up with numerical values for  $\Delta H$ ,  $\Delta S$ , etc. Up to this point we have been more concerned with the signs of thermo data and what they mean. These are summarized below and should be as much a part of you as your own name:

| ΔH | (-) | Exothermic, Heat Released, Hot      |
|----|-----|-------------------------------------|
|    | (+) | Endothermic, Heat Absorbed, Cold    |
| ΔG | (-) | Spontaneous                         |
|    | (+) | Non Spontaneous                     |
| ΔS | (+) | Disordered                          |
|    | (-) | Ordered                             |
| W  | (-) | A Bomb, Work Done on Surroundings   |
|    | (+) | "Arming a Bomb" Work Done on System |

But now we will be adding numbers:

$$C_3H_8 + 5O_2 \implies 3C0_2 + 4H_2O$$

Is **NOT** just  $\Delta G = (-)$  It **IS**  $\Delta G = -2070$ kJ which means it is really spontaneous.

(Still, while we learn to do these calculations, don't forget the importance of simply looking at a reaction and being able to assign the signs! It is knowing the signs that proves you understand thermo-- anyone can put numbers in a calculator but since half the questions I put on tests don't require a calculator....)

# How to complete the Thermodynamic Reaction Worksheet

Predict the values for  $\Delta H$ ,  $\Delta n_{gas}$ , w,  $\Delta S$ , and  $\Delta G$ . At the least provide a sign, but if you can offer a guess of the magnitude without using a calculator, that is even better.

| First the signs. | Can vou   | explain how | vou know them? |
|------------------|-----------|-------------|----------------|
| I HOU CHU DIGHO. | Cull ; Cu |             |                |

| Reaction                                                   | ΔH  | $\Delta n_{gas}$ | W | $\Delta S$ | ΔG  |
|------------------------------------------------------------|-----|------------------|---|------------|-----|
| $CH_{4(g)} + O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}$ | (-) | 0                | 0 | (-)        | (-) |
| $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)}$             | (-) | (-)              | + | (-)        | (-) |

And now the calculations.

|                                                               | $\Delta H$ | BE   | $\Delta n_{gas}$ | w(kJ)= | $\Delta n_{sys}$ | $T\Delta S$ | $\Delta G$ |
|---------------------------------------------------------------|------------|------|------------------|--------|------------------|-------------|------------|
| Chemical Reaction                                             | (kJ)       | (kJ) |                  | -∆nRT  | -                | (kJ)        | (kJ)       |
| $CH_{4(g)} + O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}$    | -802       | -802 | 0                | 0      | 0                | -1          | -801       |
| Combustion reaction, would predict large heat and             |            |      |                  |        |                  |             |            |
| spontaneous reaction. $\Delta n = 0$ means no work, small     |            |      |                  |        |                  |             |            |
| entropy change                                                |            |      |                  |        |                  |             |            |
| $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)}$                | -484       | -482 | -1               | +2.5   | -1               | -27         | -458       |
| Spontaneous combustion reaction, would predict large          |            |      |                  |        |                  |             |            |
| heat. $\Delta n$ = negative which means entropy decreases and |            |      |                  |        |                  |             |            |
| work on system                                                |            |      |                  |        |                  |             |            |

# Two central concepts to remember as we do calculations:

- 1. Why signs are what they are. Remember, it is not just arbitrary to say  $\Delta H$  is (-) for exothermic. It is a consequence of our having identified with energy flow to and from the system.
- 2. The fundamental concept behind calculations is Hess' Law, which says the path does not matter, it is just  $\Delta =$  (how it ended how it started.) Which is why there will be more than one way to calculate  $\Delta$  state functions for a reaction.

# First Thermodynamic calculation: Measuring Heat of the System, $\Delta H$

For example, in calculating enthalpy change,  $\Delta H$ , Hess' Law says that these 3 very different methods all yield the same answer for  $\Delta H_{rxn}$  and you will need to learn how to do each of them

| $\Delta H_{f}$           | Heat of Formation |
|--------------------------|-------------------|
| BE                       | Bond Energy       |
| $\Delta H_{calorimeter}$ | Bomb Calorimeter  |

### Three calculations of $\Delta H$

Let's apply Hess' Law here: Consider three ways to determine heat of reaction for a propane explosion



#### The Bomb Calorimeter Calculation.

Remember that exploding balloon? We want to know the energy released as heat by that balloon.



But this is hard to measure directly because the heat is given off in every direction, so the  $\Delta T$  is not representative of the total energy. So why not isolate the system in a container

#### **Balloon in a Sealed Container**



But we still need to make sure  $\Delta T$  is accurate and that we know C. So here is a trick that uses conservation laws.

Since  $\Delta E_{universe} = 0$  (and assuming the only E is heat)

Then

 $\Delta H_{universe} = 0 = \Delta H_{system} + \Delta H_{surrounding}$ 

So

$$\Delta H_{system} = mC\Delta T = \Delta H_{surrounding} = mC\Delta T_{surrounding}$$

#### Why is this good?

Make the surroundings something you know, like H<sub>2</sub>O. for which you can measure  $\Delta T$ . It is easy to find  $T_1 + T_2$  of H<sub>2</sub>O and mass of water and  $C_{H20} = 1$  cal/ 1°C



This is how they measure caloric content in food. Put a marshmallow in a calorimeter, surround with water, and explode the marshmallow. All the heat goes to the water surrounding it.



So we find  $\Delta H$  marshmallow using the **Calorimetry Equation** 

 $\Delta H_{marshmallow} = \Delta H_{system} = \Delta H_{surrounding} = mC\Delta T_{water}$ 

#### On to to other methods to measure $\Delta H$

**Method 2:** B.E. (Bond Energy): In this method the molecules become gas atoms and you calculate  $\Delta H$  from differences in energy to tear apart and reform molecules like a tinker toy set.

Method 3:  $\Delta H_f$  (Heat of Formation): In this method the molecules become elements in standard states (298K, 1atm) and then reform products.

### A comparison:

| <b>B.E.</b>                   | $\Delta H_{f}$                                                               |
|-------------------------------|------------------------------------------------------------------------------|
| 1. Easy conceptually          | 1. Tougher Conceptually                                                      |
| 2. Uses tables of bond energy | 2. Uses Appendixes of formation data                                         |
| 3 Only correct for gases      | 3. Applicable for all states of matter (g,l,s)                               |
|                               | 4. Can be used for $\Delta H_f$ , $\Delta S_f$ , $\Delta G_f$ (See Appendix) |

Now let's perform BE and  $\Delta H_f$  calculations on

## $C_{3}H_{8} + 5O_{2} 3CO_{2} + 4H_{2}O$

First find values for B.E. of various bonds as well as  $\Delta H_{f}$ ,  $\Delta S_{f}$ ,  $\Delta G_{f}$  (this information is in the text in appendices and on the web—you will always be given this info on an exam.)

| B.E. values $\Delta H_{f}, \Delta S_{f}, \Delta G_{f}$ |              |                 |       |        |                  |      |
|--------------------------------------------------------|--------------|-----------------|-------|--------|------------------|------|
| С-С, С-Н,                                              | <b>0=0</b> , | $C_3H_8$        | $O_2$ | $CO_2$ | H <sub>2</sub> O |      |
| 346kJ, 413kJ,                                          | 458kJ        | $\Delta H (kJ)$ | -104  | 0      | -374             | -242 |
| C=O                                                    | О-Н          | <b>S</b> (J)    | 270   | 205    | -214             | -189 |
| 799kJ                                                  | 463kJ        | $\Delta G (kJ)$ | -23   | 0      | -394             | -229 |

The propane combustion data from Tables and Appendices:

And of course you have equations that are variations on Hess's Law.

**For Bond Energies:**  $B.E. = \Sigma BE_{react} - \Sigma BE_{prod}$ 

**For Heats of Formation:**  $\Delta H_f = \Delta H_{prod} - \Delta H_{reac}$ 

And the calculations are done below. Note that BE calculations are the one exception to the convention of subtracting products from reactants. The reason is that the BE values should actually be a negative sign reflecting energy release, but because they are positive values by convention in the BE tables, the equation for the BE calculation is reversed.

download or in notice, use data 3 Enthalpy Calculation worksheet. Appendix termine the  $\Delta H_{res}$  for the combustion of propane. C3H4+5O3 → 3CO2 + 4H1O According to Hess, you can do it by any path you would like. We will use two:  $\Delta H_s^2$  and bond energies. • For  $AH_s^2$  use Appendix K and  $\Delta H_{max}^2 \equiv \lambda a AH_{rank}^2 > \lambda a AH_{rank}^2$ . To  $AH_{rank}^2$ . • For HE use in tables below and  $AH_{max}^2 \equiv E$  Here actuats - 2. BE products Path one.  $\Delta H_{e}^{*}$  The path is through the elements in their standard states (C<sub>v</sub>, O<sub>zur</sub>, H<sub>au</sub>) 2Hf = [3(-394)+ 4(-242]- [1(-144)-5(0)] = - 2046 EJ veally exortiumic  $C_3H_6 + 5O_2 - 3CO_2 + 4H_2O$   $\Delta H^0_{max} = ?????$ BE = [ [(413) + 2(146) + 5(477)] - [6(777) + 2(463)] = - 2012 kS really exertantic and BE 2 2445 (which is Hern' Law) What about Entropy? Note that just because we know sit, we can't say for sure whether the readout s What about Entropy? Note that just because we know  $\Delta H$ , we can't say for sure whether the martine in spontaneous. For that we need to look at the value of S. Can you make a good guess at to whether entropy increases for configuration in the configuration of the configuration of