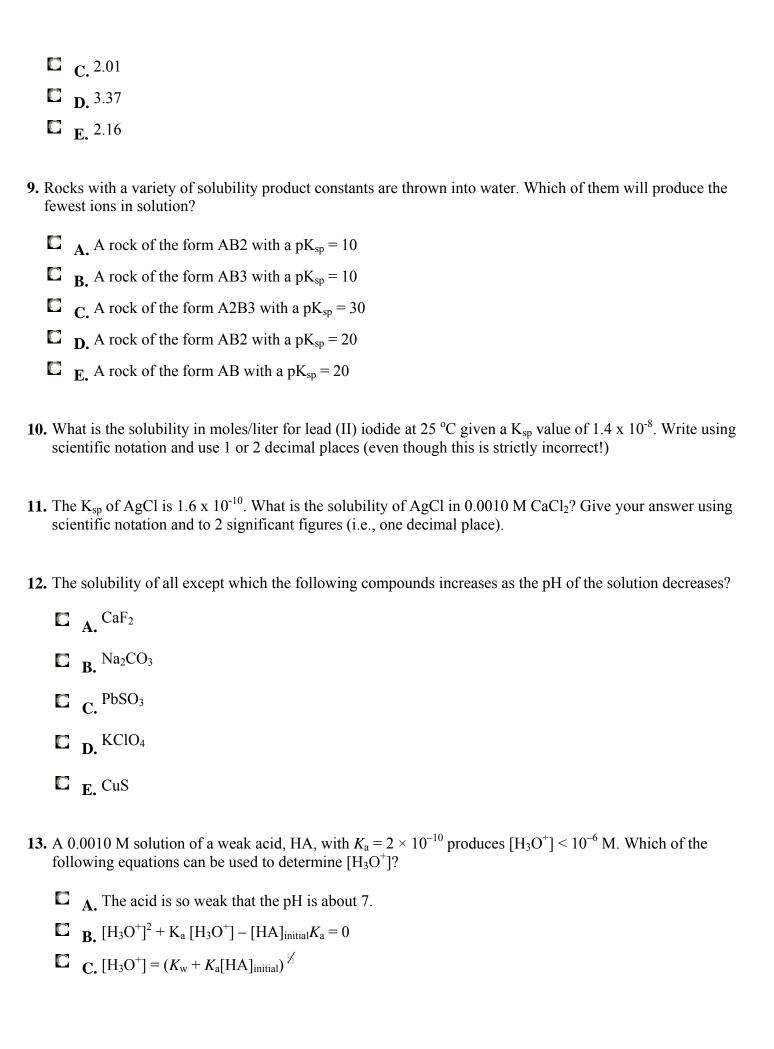

Practice Exam 2 for VandenBout and Laude Spring 2008


	hat is the concentration of hydroxide ions in a solution that contains of 0.100 M HCN(aq) and 0.200 M iCN(aq)?
	$A. 2.4 \times 10^{-5} \text{ M}$
	$\mathbf{B}_{\bullet} 1.1 \times 10^{-9} \mathrm{M}$
	$\mathbf{C} \cdot 2.5 \times 10^{-10} \mathrm{M}$
	D. 4.1×10^{-5} M
ad	ml of 0.1 M LiOH is added to each of the following solutions. Which of them will still be a buffer after dition of the base? I) 20 ml of 0.1 M HClO4 II) 20 ml of 0.1 M HClO2 III) 10 ml of 0.1 M HClO2 IV) 10 of 0.2 M HClO2 and 10 ml of 0.1 M HClO2 V) 10 ml of 0.1 M HClO2
	A. II only
	B. I and II
	C. all of them
	D. II and IV
	E. IV and V
3. W	hich of the following species is the strongest base in water?
	hich of the following species is the strongest base in water? A. the conjugate base of HNO_3
0	\mathbf{A} . the conjugate base of HNO ₃
0	A. the conjugate base of HNO ₃ B. the conjugate base of a weak acid with $pK_a = 2.5$
0	A. the conjugate base of HNO ₃ B. the conjugate base of a weak acid with $pK_a = 2.5$ C. a compound with a $pK_b = 7.5$
4. A	A. the conjugate base of HNO ₃ B. the conjugate base of a weak acid with pK _a = 2.5 C. a compound with a pK _b = 7.5 D. a compound with a pK _b = 4.5
C C C C C C C C C C C C C C C C C C C	A. the conjugate base of HNO ₃ B. the conjugate base of a weak acid with $pK_a = 2.5$ C. a compound with a $pK_b = 7.5$ D. a compound with a $pK_b = 4.5$ E. the conjugate base of a weak acid with $pK_a = 11.5$ solution of 0.5 M barium hydroxide dissociates completely in 100 ml of a 0.5 M formic acid and 0.4 M nium formate. What is the volume of barium hydroxide that can be added before the buffer capacity is ceeded?
4. A littlex	A. the conjugate base of HNO ₃ B. the conjugate base of a weak acid with $pK_a = 2.5$ C. a compound with a $pK_b = 7.5$ D. a compound with a $pK_b = 4.5$ E. the conjugate base of a weak acid with $pK_a = 11.5$ solution of 0.5 M barium hydroxide dissociates completely in 100 ml of a 0.5 M formic acid and 0.4 M nium formate. What is the volume of barium hydroxide that can be added before the buffer capacity is
4. A littlex	A. the conjugate base of A weak acid with A with A weak acid with A with A was acid with A

- **E** 90 ml
- 5. A buffer solution of volume 200.0 mL is $0.250~M~Na_2HPO_4(aq)$ and $0.250~M~KH_2PO_4(aq)$. The pH resulting from the addition of 50.0~mL of 0.100~M~NaOH(aq) to the buffer solution will be
 - **A.** 7.12
 - **B.** 7.21
 - **C.** 7.30
 - **D.** 12.77
- **6.** The titration curve for the titration of 0.100 M H₂SO₃(aq) with 0.100 M KOH(aq) is given below.

Estimate pK_{a1} and pK_{a2} of H_2SO_3 .

- 7. What is the pH at the stoichiometric point for the titration of 0.100 M CH₃COOH(aq) with 0.100 M KOH(aq)? The value of K_a for acetic acid is 1.8×10^{-5} .
 - **A.** 5.28
 - **B.** 8.72
 - C. 7.00
 - **D.** 9.26
 - E. 8.89
- **8.** What is the pH at the half-stoichiometric point for the titration of 0.22 M HNO₂(aq) with 0.10 M KOH(aq)? For HNO₂, $K_a = 4.3 \times 10^{-4}$.
 - **A** 2.31
 - **B.** 7.00

$$\square$$
 \mathbf{D}_{\bullet} $[\mathrm{H}_3\mathrm{O}^+] = [\mathrm{H}\mathrm{A}]_{\mathrm{initial}}$

$$\mathbb{E}_{\mathbf{E}_{\bullet}}[H_3O^+] = (K_a[HA]_{initial})^{1/2}$$

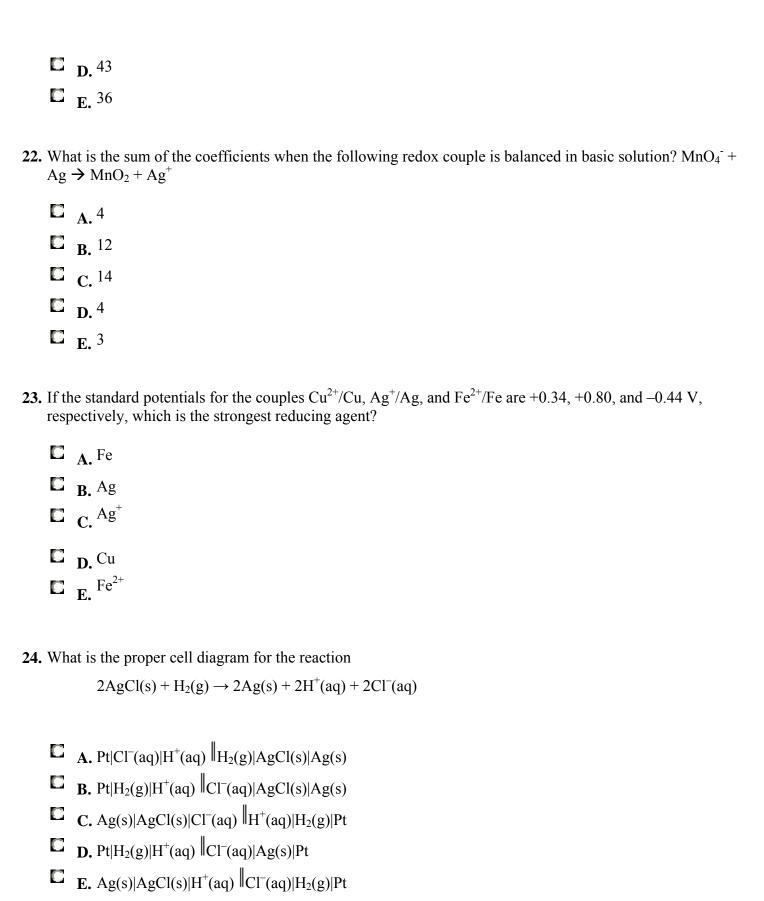
14. In a solution that is labeled " $0.10 \text{ M H}_3\text{PO}_4(\text{aq})$," $[\text{H}_3\text{O}^+] = 0.024 \text{ M}$. Match the species below with their concentrations.

$$\begin{array}{lll} H_3PO_4 & 6.2\times 10^{-8} \\ H_2PO_4^- & 8.0\times 10^{-2} \\ HPO_4^{2-} & 5.4\times 10^{-19} \\ PO_4^{3-} & 2.4\times 10^{-2} \end{array}$$

15. Write the charge balance equation for a dilute aqueous solution of KOH.

$$\square$$
 A. [KOH]_{initial} = [K⁺]

$$\mathbf{L}_{\mathbf{B}_{\bullet}}[OH^{-}] = [H_{3}O^{+}] + [K^{+}]$$


$$\mathbb{C}_{\mathbf{C}_{\bullet}}[H_3O^+] = [OH^-]$$

$$\mathbf{C}_{\mathbf{D}_{\bullet}}[K^{+}] = [OH^{-}] + [H_{3}O^{+}]$$

$$\mathbb{E}_{\mathbf{E}_{\bullet}}[OH^{-}] = [K^{+}]$$

- **16.** How many simultaneous equations need to be solved to determine the equilibrium concentrations of all species when NaHPO₄ and H₃PO₄ are added to solution? (Don't include the concentration of water in your considerations.)
 - **A.** 4
 - **B.** 5
 - **C**.6
 - **D.** 7
 - **E**. 8
- 17. For a solution labeled " $0.10 \text{ M H}_3\text{PO}_4(\text{aq})$,"
 - \blacksquare A. [H₂PO₄⁻] is greater than 0.10 M.
 - $\mathbb{C}_{\mathbf{R}_{-}}[H^{+}] = 0.30 \text{ M}.$
 - $\mathbb{C}_{\mathbf{C}_{\bullet}}[PO_4^{3-}] = 0.10 \text{ M}.$

$\mathbf{D}_{\bullet}[H^{+}] = 0.10 \text{ M}.$
$\mathbf{E}_{\mathbf{E}_{\mathbf{E}}}[\mathbf{H}^{+}]$ is less than 0.10 M.
18. Estimate the pH of 0.10 M Na ₂ HPO ₄ (aq) given $pK_{a1} = 2.12$, $pK_{a2} = 7.21$, and $pK_{a3} = 12.68$ for phosphoric acid.
L A. 12.68
E B. 9.94
C . 7.40
D , 4.67
E 2.12
19. Estimate the pH of 10^{-7} M KOH(aq).
L A. 6.9
□ B. 9
© C. 13
© _{D.} 7.2
E 7.0
2.
20. For a solution labeled "0.10 M H ₂ SO ₄ (aq),"
$\mathbf{L}_{\mathbf{A}_{\bullet}}[HSO_4^-]$ is greater than 0.10 M.
B. the pH is less than 1.0.
$\mathbb{C}_{\mathbf{C}_{\mathbf{A}}}[SO_4^{2-}] = 0.10 \text{ M}.$
\square D. the pH equals 1.0.
E . the pH is greater than 1.0.
21. What is the sum of the coefficients when the following redox couple is balanced in acidic solution? $MnO_4^- + 2I^- \rightarrow Mn^{+2} + I_2$
L A. 12
© B. 14
C 38

25. In a working electrochemical cell (+ cell voltage), the electrons flow from the anode through the external circuit to the cathode. True or false?

26. The standard potential of the Cu^{2+}/Cu electrode is +0.34 V and the standard potential of the cell

$$Pb(s)|Pb^{2+}(aq)||Cu^{2+}(aq)||Cu(s)||$$

is ± 0.47 V. What is the standard potential of the Pb²⁺/Pb electrode?

- \triangle A. -0.26 V
- $B_{\bullet} + 0.81 \text{ V}$
- $C_{1} = -0.81V$
- \mathbf{D} **D.** -0.13 V
- $E_{E_{\bullet}}$ +0.13 V
- 27. The standard potential of the cell

$$Pb(s)|PbSO_4(s)$$
 $SO_4^{2-}(aq)$ $\|Pb^{2+}(aq)|Pb(s)$

is +0.23 V at 25°C. Calculate the equilibrium constant for the reaction of 1 M Pb²⁺(aq) with 1M SO₄²⁻(aq).

- A_{\bullet} 3.7 × 10¹⁶
- $\mathbb{E}_{\mathbf{B}_{\bullet}} 8.0 \times 10^{17}$
- \mathbf{C} , 6.0×10^7
- \Box **D.** 1.7×10^{-8}
- E_{\bullet} 7.7 × 10³
- **28.** In an electrolytic cell, a current is passed through a solution of a chloride of iron, producing Fe(s) and $Cl_2(g)$ according to the reaction:

$$FeCl_2(l) \to Fe(s) + Cl_2(g)$$

The current that would produce chlorine gas at a rate of 3.00 grams per hour is:

- **L A.** 1.126 A
- **B.** 2.25 A
- C, 1.51 A
- **D.** 4.53 A

Answer: B

29. Consider the following cell:

$$Pt|H_2(g, 1 \text{ atm})|H^+(aq, ? M)| Ag^+(aq, 1.0 M)|Ag(s)$$

If the voltage of this cell is 1.04 V at 25°C and the standard potential of the Ag⁺/Ag couple is +0.80 V, calculate the hydrogen ion concentration in the anode compartment.

- **C A.** 4.6×10^{-10} M
- **L B.** 8.8×10^{-5} M
- \mathbf{C} C. $9.4 \times 10^{-3} \,\mathrm{M}$
- **D.** 1.0 M
- $\mathbb{L}_{\mathbf{E}_{\bullet}} 3.7 \times 10^{-8} \,\mathrm{M}$

30. When a cell of a lead storage battery is being charged, it is:

- **L** A. A galvanic cell
- **E** B. A Daniell cell
- C. An electrolytic cell
- **D.** A dry cell