1. What is the concentration of hydroxide ions in a solution that contains of $0.100 \mathrm{M} \mathrm{HCN}(\mathrm{aq})$ and 0.200 M $\mathrm{NaCN}(\mathrm{aq})$?

E A. $2.4 \times 10^{-5} \mathrm{M}$
E B. $1.1 \times 10^{-9} \mathrm{M}$
E C. $2.5 \times 10^{-10} \mathrm{M}$
E D. $4.1 \times 10^{-5} \mathrm{M}$
Answer: D
2. 10 ml of 0.1 M LiOH is added to each of the following solutions. Which of them will still be a buffer after addition of the base? I) 20 ml of 0.1 M HClO 4 II$) 20 \mathrm{ml}$ of 0.1 M HClO 2 III$) 10 \mathrm{ml}$ of 0.1 M HClO 2 IV$) 10$ ml of 0.2 M HClO 2 and 10 ml of 0.1 M HClO 2 V$) 10 \mathrm{ml}$ of 0.1 M HClO 2
E. A. II only

E B. I and II
E C. all of them
E.D. II and IV

E E. IV and V
Answer: D
3. Which of the following species is the strongest base in water?

E A. the conjugate base of HNO_{3}
C B. the conjugate base of a weak acid with $\mathrm{pK}_{\mathrm{a}}=2.5$
E C. a compound with a $\mathrm{pK}_{\mathrm{b}}=7.5$
E D. a compound with a $\mathrm{pK}_{\mathrm{b}}=4.5$
E E. the conjugate base of a weak acid with $\mathrm{pK}_{\mathrm{a}}=11.5$
Answer: E
4. A solution of 0.5 M barium hydroxide dissociates completely in 100 ml of a 0.5 M formic acid and 0.4 M lithium formate. What is the volume of barium hydroxide that can be added before the buffer capacity is exceeded?

E A. 20 ml
E B. 40 ml
E C. 100 ml
E. D. 50 ml
E. 90 ml

Answer: D
5. A buffer solution of volume 200.0 mL is $0.250 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}(\mathrm{aq})$ and $0.250 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4}(\mathrm{aq})$. The pH resulting from the addition of 50.0 mL of $0.100 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ to the buffer solution will be

E A. 7.12
E B. 7.21
E C. 7.30
E D. 12.77
Answer: C
6. The titration curve for the titration of $0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$ with $0.100 \mathrm{M} \mathrm{KOH}(\mathrm{aq})$ is given below.

Estimate $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$ of $\mathrm{H}_{2} \mathrm{SO}_{3}$.
Answer: $\mathrm{pKa} 1 \sim 2.0$ and $\mathrm{pKa} 2 \sim 6.9$
7. What is the pH at the stoichiometric point for the titration of $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ with 0.100 M $\mathrm{KOH}(\mathrm{aq})$? The value of K_{a} for acetic acid is 1.8×10^{-5}.

E A. ${ }^{5.28}$
[B. 8.72
E C. 7.00
E D. 9.26
E E. 8.89
Answer: B
8. What is the pH at the half-stoichiometric point for the titration of $0.22 \mathrm{M} \mathrm{HNO}_{2}(\mathrm{aq})$ with $0.10 \mathrm{M} \mathrm{KOH}(\mathrm{aq})$? For $\mathrm{HNO}_{2}, K_{\mathrm{a}}=4.3 \times 10^{-4}$.

E A. ${ }^{2.31}$
E B. 7.00

E c. 2.01
E D. ${ }^{3.37}$
E E. 2.16
Answer: D
9. Rocks with a variety of solubility product constants are thrown into water. Which of them will produce the fewest ions in solution?
C. A. A rock of the form AB 2 with a pK sp $=10$
E. A rock of the form AB 3 with a pK sp $=10$
C. A rock of the form A2B3 with a pK sp $=30$
D. A rock of the form AB 2 with a $\mathrm{pK} \mathrm{K}_{\mathrm{sp}}=20$
$\mathbf{C}_{\text {E. }}$ A rock of the form AB with a pK sp $=20$
Answer: E
10. What is the solubility in moles/liter for lead (II) iodide at $25^{\circ} \mathrm{C}$ given a $\mathrm{K}_{\text {sp }}$ value of 1.4×10^{-8}. Write using scientific notation and use 1 or 2 decimal places (even though this is strictly incorrect!)
Answer: 1.52e-3
11. The $\mathrm{K}_{\text {sp }}$ of AgCl is 1.6×10^{-10}. What is the solubility of AgCl in $0.0010 \mathrm{M} \mathrm{CaCl}_{2}$? Give your answer using scientific notation and to 2 significant figures (i.e., one decimal place).
Answer: 8.0e-8
12. The solubility of all except which the following compounds increases as the pH of the solution decreases?

$\mathrm{E}_{\text {A. }} \mathrm{CaF}_{2}$

$\mathrm{E}_{\text {B. }} \mathrm{Na}_{2} \mathrm{CO}_{3}$
$\mathrm{E}_{\text {C. }}{ }^{\mathrm{PbSO}_{3}}$
$\mathrm{E}_{\text {D. }} \mathrm{KClO}_{4}$
$\mathrm{E}_{\text {E. }} \mathrm{CuS}$

Answer: D

13. A 0.0010 M solution of a weak acid, HA , with $K_{\mathrm{a}}=2 \times 10^{-10}$ produces $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<10^{-6} \mathrm{M}$. Which of the following equations can be used to determine $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?
$\mathrm{E}_{\text {A. }}$. The acid is so weak that the pH is about 7 .
C B. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}+\mathrm{K}_{\mathrm{a}}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-[\mathrm{HA}]_{\text {initial }} K_{\mathrm{a}}=0$
C. C. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left(K_{\mathrm{w}}+K_{\mathrm{a}}[\mathrm{HA}]_{\text {initial }}\right)^{\text {/ }}$
$\mathbb{C}_{\text {D. }}{ }^{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{HA}]_{\text {initial }}}$
E E. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left(K_{\mathrm{a}}[\mathrm{HA}]_{\text {initial }}\right)^{1 / 2}$

Answer: C
14. In a solution that is labeled " $0.10 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}), "\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.024 \mathrm{M}$. Match the species below with their concentrations.

$\mathrm{H}_{3} \mathrm{PO}_{4}$	6.2×10^{-8}
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	8.0×10^{-2}
$\mathrm{HPO}_{4}{ }^{2-}$	5.4×10^{-19}
$\mathrm{PO}_{4}{ }^{3-}$	2.4×10^{-2}

Answer: $\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=8.0 \times 10^{-2},\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=2.4 \times 10^{-2},\left[\mathrm{HPO}_{4}{ }^{2-}\right]=6.2 \times 10^{-8},\left[\mathrm{PO}_{4}{ }^{3-}\right]=5.4 \times 10^{-19}$
15. Write the charge balance equation for a dilute aqueous solution of KOH .
E. A. $[\mathrm{KOH}]_{\text {initial }}=\left[\mathrm{K}^{+}\right]$

E B. $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{K}^{+}\right]$
$\mathrm{C}_{\text {c. }}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
E D. $\left[\mathrm{K}^{+}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
E. E. $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{K}^{+}\right]$

Answer: B
16. How many simultaneous equations need to be solved to determine the equilibrium concentrations of all species when NaHPO_{4} and $\mathrm{H}_{3} \mathrm{PO}_{4}$ are added to solution? (Don't include the concentration of water in your considerations.)

E A. ${ }^{4}$
E B. ${ }^{5}$
E C. ${ }^{6}$
E D. ${ }^{7}$
[E. 8
Answer: D
17. For a solution labeled " $0.10 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$,"

E A. $\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]$is greater than 0.10 M .
C B. $\left[\mathrm{H}^{+}\right]=0.30 \mathrm{M}$.
E. C. $\left[\mathrm{PO}_{4}{ }^{3-}\right]=0.10 \mathrm{M}$.

E D. $\left[\mathrm{H}^{+}\right]=0.10 \mathrm{M}$.
E. E. $\left[\mathrm{H}^{+}\right]$is less than 0.10 M .

Answer: E
18. Estimate the pH of $0.10 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}(\mathrm{aq})$ given $\mathrm{p} K_{\mathrm{a} 1}=2.12, \mathrm{p} K_{\mathrm{a} 2}=7.21$, and $\mathrm{p} K_{\mathrm{a} 3}=12.68$ for phosphoric acid.

E A. 12.68
E B. 9.94
E с. 7.40
E D. 4.67
E E. 2.12
Answer: B
19. Estimate the pH of $10^{-7} \mathrm{M} \mathrm{KOH}(\mathrm{aq})$.

E A. ${ }^{6.9}$
E B. ${ }^{9}$
$\mathrm{E}_{\mathrm{C} .} 13$
E D. 7.2
E E. 7.0
Answer: D
20. For a solution labeled " $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$,"

E A. $\left[\mathrm{HSO}_{4}^{-}\right]$is greater than 0.10 M .
E B. the pH is less than 1.0.
C. $\left[\mathrm{SO}_{4}{ }^{2-}\right]=0.10 \mathrm{M}$.

E D. the pH equals 1.0.
E E. the pH is greater than 1.0.
Answer: B
21. What is the sum of the coefficients when the following redox couple is balanced in acidic solution? $\mathrm{MnO}_{4}{ }^{-}+$ $2 \mathrm{I}^{-} \rightarrow \mathrm{Mn}^{+2}+\mathrm{I}_{2}$

E A. ${ }^{12}$
E B. ${ }^{14}$
E $_{\text {C. }} 38$

E ${ }^{\text {d. }} 43$
E. ${ }^{\text {E. }}{ }^{36}$

Answer: D
22. What is the sum of the coefficients when the following redox couple is balanced in basic solution? $\mathrm{MnO}_{4}{ }^{-}+$ $\mathrm{Ag} \rightarrow \mathrm{MnO}_{2}+\mathrm{Ag}^{+}$
$\mathrm{E}_{\text {A. }}{ }^{4}$
[B. ${ }^{12}$
E. ${ }^{14}$
$\mathrm{E}_{\text {D. }}{ }^{4}$
E E. ${ }^{3}$

Answer: C

23. If the standard potentials for the couples $\mathrm{Cu}^{2+} / \mathrm{Cu}, \mathrm{Ag}^{+} / \mathrm{Ag}$, and $\mathrm{Fe}^{2+} / \mathrm{Fe}$ are $+0.34,+0.80$, and -0.44 V , respectively, which is the strongest reducing agent?
$\mathrm{E}_{\text {A. }} \mathrm{Fe}$
E. ${ }^{\text {b. }} \mathrm{Ag}$
$\mathrm{E}_{\text {c. }} \mathrm{Ag}^{+}$
$\mathrm{E}_{\text {D. }}{ }^{\mathrm{Cu}}$
E. E. $^{2+}$

Answer: A
24. What is the proper cell diagram for the reaction

$$
2 \mathrm{AgCl}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Ag}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

E ${ }_{\text {A. }}{\mathrm{Pt}\left|\mathrm{Cl}^{-}(\mathrm{aq})\right| \mathrm{H}^{+}(\mathrm{aq})} \|_{\mathrm{H}_{2}(\mathrm{~g})|\mathrm{AgCl}(\mathrm{s})| \mathrm{Ag}(\mathrm{s})}$
$\mathbf{C}_{\text {B. }}{\mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{H}^{+}(\mathrm{aq})} \|_{\mathrm{Cl}^{-}(\mathrm{aq})|\mathrm{AgCl}(\mathrm{s})| \mathrm{Ag}(\mathrm{s})}$
$\mathrm{C}_{\text {C. }} \mathrm{Ag}(\mathrm{s})|\mathrm{AgCl}(\mathrm{s})| \mathrm{Cl}^{-}(\mathrm{aq}) \|_{\mathrm{H}^{+}(\mathrm{aq})\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{Pt}}$
$\mathbf{C}_{\text {D. }} \mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{H}^{+}(\mathrm{aq}) \|_{\mathrm{Cl}^{-}(\mathrm{aq})|\mathrm{Ag}(\mathrm{s})| \mathrm{Pt}}$
E $\begin{gathered}\text { E. } \mathrm{Ag}(\mathrm{s})|\mathrm{AgCl}(\mathrm{s})| \mathrm{H}^{+}(\mathrm{aq})\end{gathered} \|_{\mathrm{Cl}^{-}(\mathrm{aq})\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{Pt}}$
Answer: B
25. In a working electrochemical cell (+ cell voltage), the electrons flow from the anode through the external circuit to the cathode. True or false?
Answer: True
26. The standard potential of the $\mathrm{Cu}^{2+} / \mathrm{Cu}$ electrode is +0.34 V and the standard potential of the cell

$$
\mathrm{Pb}(\mathrm{~s}) \mid \mathrm{Pb}^{2+}(\mathrm{aq}) \|_{\mathrm{Cu}^{2+}(\mathrm{aq}) \mid \mathrm{Cu}(\mathrm{~s})}
$$

is +0.47 V . What is the standard potential of the $\mathrm{Pb}^{2+} / \mathrm{Pb}$ electrode?
E A. -0.26 V
E B. ${ }^{+0.81 \mathrm{~V}}$
E C. -0.81 V
E D. -0.13 V
E E. ${ }^{+0.13 \mathrm{~V}}$
Answer: D
27. The standard potential of the cell

$$
\mathrm{Pb}(\mathrm{~s}) \mid \mathrm{PbSO}_{4}(\mathrm{~s}) \quad \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \|_{\mathrm{Pb}^{2+}(\mathrm{aq}) \mid \mathrm{Pb}(\mathrm{~s})}
$$

is +0.23 V at $25^{\circ} \mathrm{C}$. Calculate the equilibrium constant for the reaction of $1 \mathrm{M} \mathrm{Pb}^{2+}(\mathrm{aq})$ with $1 \mathrm{M} \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$.
$D_{\text {A. }}{ }^{3.7 \times 10^{16}}$
$\mathrm{E}_{\text {B. }} 8.0 \times 10^{17}$
[C. $^{6.0 \times 10^{7}}$
$\mathbb{D}_{\text {D. }} 1.7 \times 10^{-8}$
E E. ${ }^{7.7 \times 10^{3}}$
Answer: C
28. In an electrolytic cell, a current is passed through a solution of a chloride of iron, producing $\mathrm{Fe}(\mathrm{s})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$ according to the reaction:
$\mathrm{FeCl}_{2}(\mathrm{l}) \rightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g})$
The current that would produce chlorine gas at a rate of 3.00 grams per hour is:
E A. 1.126 A
E B. 2.25 A
E C. 1.51 A
E D. 4.53 A

Answer: B

29. Consider the following cell:

$$
\mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~g}, 1 \mathrm{~atm})\right| \mathrm{H}^{+}(\mathrm{aq}, ? \mathrm{M}) \|_{\mathrm{Ag}^{+}(\mathrm{aq}, 1.0 \mathrm{M}) \mid \operatorname{Ag}(\mathrm{s})}
$$

If the voltage of this cell is 1.04 V at $25^{\circ} \mathrm{C}$ and the standard potential of the $\mathrm{Ag}^{+} / \mathrm{Ag}$ couple is +0.80 V , calculate the hydrogen ion concentration in the anode compartment.

E A. ${ }^{4.6 \times 10^{-10} \mathrm{M}}$
E B. $8.8 \times 10^{-5} \mathrm{M}$
$C_{\text {C. }} 9.4 \times 10^{-3} \mathrm{M}$
E D. 1.0 M
E E. $3.7 \times 10^{-8} \mathrm{M}$

Answer: B

30. When a cell of a lead storage battery is being charged, it is:

E A. A galvanic cell
E. B. A Daniell cell
C. An electrolytic cell

E D. A dry cell
Answer: C

