1. What is the concentration of hydroxide ions in a solution that contains of 0.100 M HCN(aq) and 0.200 M NaCN(aq)?

```
A. 2.4 \times 10^{-5} M

B. 1.1 \times 10^{-9} M

C. 2.5 \times 10^{-10} M

D. 4.1 \times 10^{-5} M
```

Answer: D

- 2. 10 ml of 0.1 M LiOH is added to each of the following solutions. Which of them will still be a buffer after addition of the base? I) 20 ml of 0.1 M HClO4 II) 20 ml of 0.1 M HClO2 III) 10 ml of 0.1 M HClO2 IV) 10 ml of 0.2 M HClO2 and 10 ml of 0.1 M HClO2 V) 10 ml of 0.1 M HClO2
 - **C** A. II only
 - **B.** I and II
 - **C**. all of them
 - **D.**^{II} and IV
 - **E**. IV and V

Answer: D

- 3. Which of the following species is the strongest base in water?
 - \square A. the conjugate base of HNO₃
 - **D B.** the conjugate base of a weak acid with $pK_a = 2.5$
 - **C**. a compound with a $pK_b = 7.5$
 - **D**. a compound with a $pK_b = 4.5$
 - \square E. the conjugate base of a weak acid with pK_a = 11.5

Answer: E

- **4.** A solution of 0.5 M barium hydroxide dissociates completely in 100 ml of a 0.5 M formic acid and 0.4 M lithium formate. What is the volume of barium hydroxide that can be added before the buffer capacity is exceeded?
 - **A**, 20 ml
 - **B.** ⁴⁰ ml
 - **C**. ¹⁰⁰ ml
 - **D.** 50 ml

E. ⁹⁰ ml

Answer: D

- **5.** A buffer solution of volume 200.0 mL is 0.250 M Na₂HPO₄(aq) and 0.250 M KH₂PO₄(aq). The pH resulting from the addition of 50.0 mL of 0.100 M NaOH(aq) to the buffer solution will be
 - A. 7.12
 B. 7.21
 C. 7.30
 D. 12.77

Answer: C

6. The titration curve for the titration of 0.100 M H₂SO₃(aq) with 0.100 M KOH(aq) is given below.

Estimate pK_{a1} and pK_{a2} of H_2SO_3 .

Answer: $pKa1 \sim 2.0$ and $pKa2 \sim 6.9$

- 7. What is the pH at the stoichiometric point for the titration of 0.100 M CH₃COOH(aq) with 0.100 M KOH(aq)? The value of K_a for acetic acid is 1.8×10^{-5} .
 - A. 5.28
 B. 8.72
 C. 7.00
 D. 9.26
 E. 8.89

Answer: B

- 8. What is the pH at the half-stoichiometric point for the titration of 0.22 M HNO₂(aq) with 0.10 M KOH(aq)? For HNO₂, $K_a = 4.3 \times 10^{-4}$.
 - **A.** 2.31
 - **□ B.** 7.00

C. 2.01
 D. 3.37
 E. 2.16

Answer: D

- **9.** Rocks with a variety of solubility product constants are thrown into water. Which of them will produce the fewest ions in solution?
 - \square A rock of the form AB2 with a pK_{sp} = 10
 - **D B.** A rock of the form AB3 with a $pK_{sp} = 10$
 - **C** A rock of the form A2B3 with a $pK_{sp} = 30$
 - **D**. A rock of the form AB2 with a $pK_{sp} = 20$
 - **E**. A rock of the form AB with a $pK_{sp} = 20$

Answer: E

10. What is the solubility in moles/liter for lead (II) iodide at 25 °C given a K_{sp} value of 1.4 x 10⁻⁸. Write using scientific notation and use 1 or 2 decimal places (even though this is strictly incorrect!)

Answer: 1.52e-3

11. The K_{sp} of AgCl is 1.6 x 10⁻¹⁰. What is the solubility of AgCl in 0.0010 M CaCl₂? Give your answer using scientific notation and to 2 significant figures (i.e., one decimal place).

Answer: 8.0e-8

- 12. The solubility of all except which the following compounds increases as the pH of the solution decreases?
 - \square A. CaF₂
 - **B.** Na₂CO₃
 - C. PbSO₃
 - \square **D**. KClO₄
 - C E. CuS

Answer: D

- **13.** A 0.0010 M solution of a weak acid, HA, with $K_a = 2 \times 10^{-10}$ produces $[H_3O^+] < 10^{-6}$ M. Which of the following equations can be used to determine $[H_3O^+]$?
 - **A.** The acid is so weak that the pH is about 7.
 - **D B.** $[H_3O^+]^2 + K_a [H_3O^+] [HA]_{initial}K_a = 0$
 - $\square \quad \mathbf{C} \quad [\mathrm{H}_{3}\mathrm{O}^{+}] = (K_{\mathrm{w}} + K_{\mathrm{a}}[\mathrm{H}\mathrm{A}]_{\mathrm{initial}})^{1/2}$

D. $[H_3O^+] = [HA]_{initial}$ **E.** $[H_3O^+] = (K_a[HA]_{initial})^{1/2}$

Answer: C

14. In a solution that is labeled " $0.10 \text{ M H}_3\text{PO}_4(aq)$," $[\text{H}_3\text{O}^+] = 0.024 \text{ M}$. Match the species below with their concentrations.

H ₃ PO ₄	6.2×10^{-8}
$H_2PO_4^-$	8.0×10^{-2}
HPO_4^{2-}	5.4×10^{-19}
PO_4^{3-}	2.4×10^{-2}

Answer: $[H_3PO_4] = 8.0 \times 10^{-2}, [H_2PO_4^-] = 2.4 \times 10^{-2}, [HPO_4^{2-}] = 6.2 \times 10^{-8}, [PO_4^{3-}] = 5.4 \times 10^{-19}$

15. Write the charge balance equation for a dilute aqueous solution of KOH.

Answer: B

16. How many simultaneous equations need to be solved to determine the equilibrium concentrations of all species when NaHPO₄ and H₃PO₄ are added to solution? (Don't include the concentration of water in your considerations.)

0	A. ⁴	
	B. ⁵	
	C. ⁶	
	D. 7	
0	E. ⁸	
Answer: D		

17. For a solution labeled "0.10 M H₃PO₄(aq),"

- \square A. [H₂PO₄⁻] is greater than 0.10 M.
- **C B**. $[H^+] = 0.30$ M.
- **C**. $[PO_4^{3-}] = 0.10 \text{ M}.$

D. $[H^+] = 0.10 \text{ M}.$

 \square **E.** [H⁺] is less than 0.10 M.

Answer: E

- **18.** Estimate the pH of 0.10 M Na₂HPO₄(aq) given $pK_{a1} = 2.12$, $pK_{a2} = 7.21$, and $pK_{a3} = 12.68$ for phosphoric acid.
 - **A.** 12.68 **B.** 9.94
 - **C**. ^{7.40}
 - **D.** 4.67
 - **□ E.** 2.12

Answer: B

19. Estimate the pH of 10^{-7} M KOH(aq).

- **A.** 6.9
- **□ B.** ⁹
- **C**. ¹³
- **D.** 7.2
- **E**. 7.0

Answer: D

20. For a solution labeled " $0.10 \text{ M H}_2\text{SO}_4(\text{aq})$,"

- \square A. [HSO₄⁻] is greater than 0.10 M.
- **B.** the pH is less than 1.0.
- **C** $[SO_4^{2-}] = 0.10 \text{ M}.$
- \square **D.** the pH equals 1.0.
- \square E. the pH is greater than 1.0.

Answer: B

- **21.** What is the sum of the coefficients when the following redox couple is balanced in acidic solution? $MnO_4^- + 2I^- \rightarrow Mn^{+2} + I_2$
 - **A.** 12
 - **□ B.** ¹⁴
 - C. 38

\bigcirc	D.	43
<u> </u>	D.	43

E. 36

Answer: D

- 22. What is the sum of the coefficients when the following redox couple is balanced in basic solution? $MnO_4^- + Ag \rightarrow MnO_2 + Ag^+$
 - A. 4
 B. 12
 C. 14
 D. 4
 E. 3

Answer: C

- **23.** If the standard potentials for the couples Cu^{2+}/Cu , Ag^{+}/Ag , and Fe^{2+}/Fe are +0.34, +0.80, and -0.44 V, respectively, which is the strongest reducing agent?
 - $\begin{array}{c} \mathbf{L} & \mathbf{A}, \mathrm{Fe} \\ \mathbf{L} & \mathbf{B}, \mathrm{Ag} \\ \mathbf{L} & \mathbf{C}, \mathrm{Ag}^+ \\ \mathbf{L} & \mathbf{D}, \mathrm{Cu} \\ \mathbf{L} & \mathbf{E}, \mathrm{Fe}^{2+} \end{array}$

Answer: A

24. What is the proper cell diagram for the reaction

 $2AgCl(s) + H_2(g) \rightarrow 2Ag(s) + 2H^+(aq) + 2Cl^-(aq)$

- $\square_{\mathbf{A}. \operatorname{Pt}|\operatorname{Cl}^{-}(\operatorname{aq})|\operatorname{H}^{+}(\operatorname{aq})}\|_{\operatorname{H}_{2}(g)|\operatorname{AgCl}(s)|\operatorname{Ag}(s)}$
- $\square B. Pt|H_2(g)|H^+(aq) \|_{C\Gamma(aq)|AgCl(s)|Ag(s)}$
- $\square \quad \mathbf{C.} \operatorname{Ag}(s)|\operatorname{AgCl}(s)|\operatorname{Cl}^{-}(aq) \|_{\operatorname{H}^{+}(aq)|\operatorname{H}_{2}(g)|\operatorname{Pt}}$
- $\square \quad \mathbf{D}. Pt|H_2(g)|H^+(aq) \|Cl^-(aq)|Ag(s)|Pt|$
- \mathbb{L} E. Ag(s)|AgCl(s)|H⁺(aq) $\|_{Cl^{-}(aq)|H_2(g)|Pt}$

Answer: B

25. In a working electrochemical cell (+ cell voltage), the electrons flow from the anode through the external circuit to the cathode. True or false?

Answer: True

26. The standard potential of the Cu^{2+}/Cu electrode is +0.34 V and the standard potential of the cell

 $Pb(s)|Pb^{2+}(aq)||Cu^{2+}(aq)||Cu(s)||$

is +0.47 V. What is the standard potential of the Pb^{2+}/Pb electrode?

 $\begin{array}{c|c} & A. & -0.26 \text{ V} \\ \hline & B. & +0.81 \text{ V} \\ \hline & C. & -0.81 \text{ V} \\ \hline & D. & -0.13 \text{ V} \\ \hline & E. & +0.13 \text{ V} \end{array}$

Answer: D

27. The standard potential of the cell

 $Pb(s)|PbSO_4(s) SO_4^{2-}(aq) ||Pb^{2+}(aq)|Pb(s)|$

is +0.23 V at 25°C. Calculate the equilibrium constant for the reaction of 1 M $Pb^{2+}(aq)$ with 1M $SO_4^{2-}(aq)$.

A. 3.7×10^{16} **B.** 8.0×10^{17} **C.** 6.0×10^{7} **D.** 1.7×10^{-8} **E.** 7.7×10^{3}

Answer: C

28. In an electrolytic cell, a current is passed through a solution of a chloride of iron, producing Fe(s) and Cl₂(g) according to the reaction:

 $FeCl_2(l) \rightarrow Fe(s) + Cl_2(g)$ The current that would produce chlorine gas

The current that would produce chlorine gas at a rate of 3.00 grams per hour is:

A. 1.126 A
B. 2.25 A
C. 1.51 A

D. 4.53 A

Answer: B

29. Consider the following cell:

 $Pt|H_2(g, 1 atm)|H^+(aq, ? M) ||Ag^+(aq, 1.0 M)|Ag(s)||$

If the voltage of this cell is 1.04 V at 25°C and the standard potential of the Ag^+/Ag couple is +0.80 V, calculate the hydrogen ion concentration in the anode compartment.

A. 4.6×10^{-10} M **B.** 8.8×10^{-5} M **C.** 9.4×10^{-3} M **D.** 1.0 M **E.** 3.7×10^{-8} M

Answer: B

30. When a cell of a lead storage battery is being charged, it is:

- **A.** A galvanic cell
- **B.** A Daniell cell
- \square C. An electrolytic cell
- **D**. A dry cell

Answer: C