Different ways to describe concentration
All of them are essentially
Amount of solute
Amount of everything (solvent)

Demo

Why does the temperature drop?
A. the salt dissolving requires energy (endothermic)
B. the salt dissolving releases energy (exothermic)
C. the ice melting releases energy (exothermic)
D. the ice melting requires energy (endothermic)

Solutions

The main effect of making a solution is that the entropy of the solution is higher than the separate solvent and solute

$$
\mathrm{T}=0^{\circ} \mathrm{C} \text { and } \mathrm{P}=\mathrm{I} \text { atm }
$$

Principles of Chemistry II

Somethings dissolve into ions making more moles

I M sugar solution = I moles of sugar in I L solution

I M NaCl solution $=I$ moles of Na^{+}in I L solution I mole of Cl^{-}in I L solution

2 moles of "stuff"

The only thing that matters is the number of moles of "stuff"
This effect depends on the entropy of the solution which depends on how much "stuff" is dissolved but not what the "stuff" is

Colligative Properties

depend on the concentration of the solution but not what is actually dissolved (note: this is approximate as it assumes and ideal solution)

Effect of making the solution

Boiling Point Elevation
Solution now more stable than vapor. Therefore the boiling point goes up

Freezing Point Depression
Solution now more stable than solid. Therefore the freezing point goes down
constant that depends on solvent

Boiling Point Elevation

Remember the number of particles is what matters

$$
\Delta \mathrm{T}=\mathrm{i} \mathrm{~K}_{\mathrm{b}} \mathrm{~m}_{\text {solute }}
$$

Figure Copyright Houghton Miflin
Company. All rights reserved

If the boiling point is higher, what is the vapor pressure of the solution?
A. higher than the pure solvent
B. lower than the pure solvent
C. the same as the pure solvent

Which would you expect to have the lowest freezing point
A. 2 M sugar solution
B. $\quad 0.5 \mathrm{M} \mathrm{NaCl}$ solution
C. $\quad \mathrm{I} \mathrm{M} \mathrm{NaCl}$ solution
D. $\quad 1 \mathrm{M} \mathrm{MgCl}_{2}$ solution

Solvent can pass through the membrane but the solute can't
Solution is lower in free energy so pure solvent moves to the solution side

Osmotic Pressure

$\Pi=$ iMRT

Principles of Chemistry II
© Vanden Bout

Examples

Solution of 100 g of sugar (sucrose MW $342 \mathrm{~g} \mathrm{~mol}^{-1}$) in 1 L of water.
$(100 \mathrm{~g}) /\left(342 \mathrm{~g} \mathrm{~mol}^{-1}\right)=0.292 \mathrm{~mol}$ sugar
1 L water is approx. 1 kg
$(1000 \mathrm{~g}) /\left(18 \mathrm{~g} \mathrm{~mol}^{-1}\right)=55.6$ moles

Mole fraction sugar of solution

$\chi_{\text {sugar }}=(0.292 \mathrm{~mol}) /(0.292+55.6)=.00522$

Mole fraction water of solution

$\chi_{\text {water }}=(55.6 \mathrm{~mol}) /(0.292+55.6)=0.995\left(\right.$ or $\left.1-\chi_{\text {sugar }}\right)$

Molality

$\mathrm{m}=(.292 \mathrm{~mol}) /(1 \mathrm{~kg})=0.292 \mathrm{~mol} \mathrm{~kg}^{-1}$

Molarity

$\mathrm{M}=(.292 \mathrm{~mol}) /(1 \mathrm{~L})=0.292 \mathrm{~mol} \mathrm{~L}^{-1}$

Freezing point depressions (given K_{f} for water is 1.86)
$\Delta \mathrm{T}=-\mathrm{i} \mathrm{K}_{\mathrm{f}} \mathrm{m}=-(1)(1.86)(.292)=-0.543{ }^{\circ} \mathrm{C}$
Boiling point elevation (given K_{b} for water is 0.51)
$\Delta \mathrm{T}=-\mathrm{i} \mathrm{K}_{\mathrm{b}} \mathrm{m}=-(1)(0.51)(.292)=+0.15^{\circ} \mathrm{C}$
Osmotic Pressure (at $25^{\circ} \mathrm{C}$)
$\Pi=M R T=\left(1 \mathrm{~mol} \mathrm{~L}^{-1}\right)\left(0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298.15 \mathrm{~K})=24.5 \mathrm{~atm}$
Vapor Pressure (given pure vapor pressure of water at $25^{\circ} \mathrm{C}$ is 23.76 Torr)
$\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=\chi_{\mathrm{H} 2 \mathrm{O}} \mathrm{P}^{\circ}=(.995)(23.76)=23.64$ Torr

