pH

Log scale.
Useful when dealing with very small or very large number (big ranges of numbers) every " pH " unit is $10 x$ larger or smaller $\left[\mathrm{H}^{+}\right]$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

$$
\begin{array}{rcc}
\mathrm{pH}=13 & \mathrm{pH}=7 & \mathrm{pH}=2 \\
{\left[\mathrm{H}^{+}\right]=10^{-13}} & {\left[\mathrm{H}^{+}\right]=10^{-7}} & {\left[\mathrm{H}^{+}\right]=10^{-2}}
\end{array}
$$

pH 3-I4

$\mathrm{pH}=8$
$\mathrm{pH}=0$

Strong Acids and Bases

"Strong" means one thing
The substance dissociates 100% in water

Strong Acid
$\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right][\mathrm{Cl}-]}{[\mathrm{HCl}]} \approx \infty
$$

Strong Electrolyte
$\mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Na}^{+}\right][\mathrm{C} \cdot] \approx \infty$

Strong Acids

HCl
HBr
HI
HClO_{4} HClO_{3}
$\mathrm{H}_{2} \mathrm{SO}_{4}$
HNO_{3}
Hydrochloric Hydrobromic Hydroiodic Perchloric
Chloric Sulfuric Nitric

All Dissociate 100\%

What is the pH of a 0.1 M solution of Nitric Acid

$$
\mathrm{HNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})
$$

0.1 M acid makes a solution with $\left[\mathrm{H}^{+}\right]=0.1 \mathrm{M}$

$$
\mathrm{pH}=-\log (0 . \mathrm{I})=\mathrm{I}
$$

What is the pH of a 0.5 M solution of HBr ?

A. $\quad 0.5$
B. I
C. 0.3
D. 0
$\left[\mathrm{H}^{+}\right]=0.5 \quad 0<\mathrm{pH}<1$
E. $\quad 12$

We can ignore the conjugate base of a strong acid

$$
\begin{gathered}
\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right][\mathrm{Cl}]}{[\mathrm{HCl}]} \approx \infty
\end{gathered}
$$

equilibrium constant is so large, even if we add Cl^{-}the shift back to

HCl will be negligible

For this reaction which has a higher entropy?

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

A. the products
B. the reactants
C. they are the same

For this reaction which has a lower enthalpy?

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

A. the products
B. the reactants
C. they are the same

For this reaction which has a lower free energy?

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

A. the products
B. the reactants
C. they are the same

Liquid Water

 will spontaneously dissociate to a small extent$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
\mathrm{K}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\mathrm{I}} \\
\mathrm{~K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}
\end{gathered}
$$

Pure Water

$$
\begin{array}{ccc}
& \mathrm{H}^{+} & \mathrm{OH}^{-} \\
\mathrm{I} & \mathrm{O} & \mathrm{O} \\
\mathrm{C} & +\mathrm{x} & +\mathrm{x} \\
\mathrm{E} & +\mathrm{x} & +\mathrm{x} \\
& \mathrm{~K}_{w}= & 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=(x)(x) \\
& x=10^{-7}\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7}
\end{array}
$$

pH of pure water at $25^{\circ} \mathrm{C}$

$$
\begin{aligned}
& x=10^{-7}\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7} \\
& \\
& \quad \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(10^{-7}\right)=7
\end{aligned}
$$

Neutral
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
at $25^{\circ} \mathrm{C}$
$\mathrm{pH}=7$
$\mathrm{pOH}=7$

Acidic
Basic
$\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$ at $25^{\circ} \mathrm{C}$
$\mathrm{pH}>7$
$\mathrm{pOH}>7$

$\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

This reaction is endothermic.
Given that information what do you think the pH is for pure water at $60^{\circ} \mathrm{C}$?
A.
6.5
B. 7
C. $\quad 7.5$

If pure water has a $\mathrm{pH}=6.5$ at $60^{\circ} \mathrm{C}$ is it Acidic?
A. Yes
B. No
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$its neutral $\mathrm{K}_{w}=9 \times 10^{-14}$

TABLE 7.1 Various Ways to Describe Acid Strength

Property	Strong Acid	Weak Acid
K_{a} value	K_{a} is large	K_{a} is small
Position of the dissociation equilibrium	Far to the right	Far to the left
Equilibrium concentration of H^{+} compared with original concentration of HA	$\left[\mathrm{H}^{+}\right] \approx[\mathrm{HA}]_{0}$	$\left[\mathrm{H}^{+}\right] \ll[\mathrm{HA}]_{0}$
Strength of conjugate base compared with that of water	A^{-}much weaker base than $\mathrm{H}_{2} \mathrm{O}$	A^{-}much stronger base than $\mathrm{H}_{2} \mathrm{O}$

Let's look at three possible solutions

Weak Acid
 Conjugate Base of the Weak Acid Weak Acid + Conjugate Base

Weak Acid

$$
\begin{array}{llll}
& \mathrm{HA}(\mathrm{aq}) & & \mathrm{H}^{+}(\mathrm{aq})+ \\
& \mathrm{HA} & \mathrm{~A}^{-}(\mathrm{aq}) \\
\mathrm{H} & \mathrm{C} & \mathrm{O}^{+} & \mathrm{A}^{-} \\
\mathrm{really} 10^{-7}
\end{array} \quad \mathrm{O}
$$

Weak Base

$$
\begin{gathered}
\mathrm{A}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{HA}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}
\end{gathered}
$$

identical result as before (same assumptions)

$$
\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{\mathrm{b}} \mathrm{C}}
$$

Buffer Both HA and A-

$$
\mathrm{HA}(\mathrm{aq}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

HA
I CHA
H^{+}
really 10^{-7}

C -x
$+x \quad+x$
E $\quad \mathrm{ChA}^{-X}$
$+x \quad C_{A-}+x$
$K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[H A]}=\frac{(x)\left(\mathrm{C}_{A_{-}}+x\right)}{\mathrm{C}_{\mathrm{HA}_{-}-\mathrm{x}}}=\frac{(\mathrm{x})\left(\mathrm{C}_{A}\right)}{\mathrm{C}_{\mathrm{HA}}}$ assuming $\mathrm{x} \ll \mathrm{C}$

