Today

Solubility The easiest of all the equilibria

Equilibria with no approximations How to set up such a problem

Principles of Chemistry II

Solubility Equilibria

AgCl (s)
$$\longleftrightarrow$$
 Ag⁺(aq) + Cl⁻(aq)

$$K_{sp} = [Ag^{+}][Cl^{-}]$$

Molar solubility How many moles per L of solution at equilibrium

Solubility How many grams per L of solution at equilibrium

What is the solubility of ScF₃?
ScF₃ (s)
$$\longleftrightarrow$$
 Sc³⁺(aq) + 3F⁻(aq)
 $K_{sp} = [Sc^{3+}][F-]^3 = 4.2 \times 10^{-18}$
ScF₃ Sc³⁺ F⁻ K = $[Sc^{3+}][F-]^3$
I n_{solid} 0 0 K = (x)(3x)^3
C -x +x +3x K = 27x⁴ = 4.2 × 10⁻¹⁸
E n-x +x +3x x = 1.99 × 10⁻⁵
 $x = [Sc^{3+}]$
x is also the number of moles of ScF₃ that dissolve
molar solubility 1.99 × 10⁻⁵ moles/L
solubility 2 × 10⁻³ g/L

Selective precipitation

I have a solution which contains 0.1 M AgNO3 and 0.1 M PbNO3. How can I get out the silver and leave the lead behind?

Add an anion for an insoluble salt for silver such as Cl⁻ K_{sp} is 1.6 x 10⁻¹⁰ for AgCl

But $PbCl_2$ is also insoluble so it will precipitate out as well K_{sp} is 2.4 x 10⁻⁴ for $PbCl_2$

The K_{sp} for AgCl is much smaller so we can selectively precipitate the AgCl

I have a solution which contains 0.1 M AgNO3 and 0.1 M PbNO3. How can I get out the silver and leave the lead behind?

what is the maximum concentration of Cl⁻ we can have and still have the PbCl₂ dissolved $K_{sp} = 2.4 \times 10^{-4}$

Principles of Chemistry II

Principles of Chemistry II

Previously solving acid base problems

Strong acids	Weak acids
$[H^{+}] = C_{a}$	$[H^+] = (K_a C_a)$
Buffer	Polyprotic (inbetween
$[\mathbf{H}^{T}] = \mathbf{K}_{a} \left(\mathbf{C}_{a} / \mathbf{C}_{b} \right)$	$[H^{T}] = sqrt(K_{a1}K_{a2})$

All of these involve some kind of approximation

First we ignore that there is any H^+ for the water (ignore K_w except when relating OH^-)

Next we assume the concentration of acid is large $C_a > 10^{-2}$ and that K_a is small

For polyprotics we assume the K's are well separated

Principles of Chemistry II

What to do?

It is all simply a very large algebra problem The key: Setting up the problem

Principles of Chemistry II

What is the pH of 10⁻⁸ M HCl?

- A. 8
- B. 7
- C. a little less than 7
- D. a little more than 7

water starts at 10⁻⁷ M H⁺ from K_w adding a very tiny tiny bit of acid will make it only slightly acidic

We can solve this problem exactly

What we need is a set of equations

What are our unknowns?

The concentrations in the solution

[H⁺] [Cl⁻] [OH⁻]

Three unknowns We need 3 equations

Principles of Chemistry II

In any equilibrium problems we will have three types of equations that relate the concentrations to known quantities (equilibrium constants, starting concentrations...)

Type I: Equilibrium Constant Equation

 $K_w = [H^+][OH^-]$

Type II: Mass Balance

 $C_{HCI} = [CI^{-}]$ all of the CI^{-} comes from the HCI

Type II: Charge Balance (solutions are neutral in charge [H⁺] = [OH⁻] + [Cl⁻] sum or all positive charges equals sum of all negative charges

Principles of Chemistry II

```
K_{w} = [H^{+}][OH^{-}]
[H^+] = [OH^-] + [CI^-]
C_{HCI} = [CI^{-}]
    Three equations and three unknowns
              (I know K<sub>w</sub> and C<sub>HCI</sub>)
                  Now it is just algebra
```


Some Algebra and then

 $[H^+]^3 + K_a[H^+]^2 - (K_w + K_aC_{HA})[H^+] - K_aK_w = 0$

Exact solution for the [H⁺] for a weak acid

If we say $K_w \sim 0$ then we can write this as $[H^+]^2 + K_a([H^+] - C_{HA}) = 0$

> If we say $C_{HA} >> H^+$ then $[H^+]^2 - K_a C_{HA} = 0$ $[H^+] = sqrt(K_a C_{HA})$

Principles of Chemistry II

Let's look at the equations we would need for finding the pH of a solution of 0.1 M NaH₂PO₄