This print-out should have 29 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

Strong Acid or Base
 00110.0 points

Which of
I) $\mathrm{HCl} \quad \mathrm{II}) \mathrm{HF} \quad$ III) LiOH
IV) $\mathrm{HClO}_{2} \quad$ V) HNO_{3}
are strong acids or strong bases in water?

1. All of the compounds
2. I, III, and V only correct
3. I, III, IV, and V only
4. I, II, IV, and V only
5. I, II, III, and V only

Explanation:

Buffer NH3

00210.0 points

What is the pH of a solution containing 0.3 M NH 44 Cl and $0.6 \mathrm{M} \mathrm{NH}_{3}$? The $\mathrm{p} K_{\mathrm{a}}$ of the ammonium ion is 9.25 .

1. 5.05
2. 8.95
3. 12.25
4. 4.45
5. 9.55 correct

Explanation:

Buffer Prep 01

00310.0 points

Which of the following solutions will produce a buffer?
I) 20 mL of $0.5 \mathrm{M}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NHCl}+50 \mathrm{~mL}$ of $0.1 \mathrm{M}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
II) 20 mL of $0.5 \mathrm{M} \mathrm{HNO}_{2}+50 \mathrm{~mL}$ of 0.1 M NaOH
III) 20 mL of $0.5 \mathrm{M} \mathrm{HCl}+50 \mathrm{~mL}$ of 0.1 M NH_{3}
IV) 20 mL of $0.5 \mathrm{M} \mathrm{HClO}_{2}+50 \mathrm{~mL}$ of 0.1 M CH 33 COOH
V) 20 mL of $0.5 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}+50 \mathrm{~mL}$ of 0.1 M NaOH

1. I, II, III, and V only
2. II and IV only
3. I, II, and V only correct
4. I, II, IV, and V only
5. II only

Explanation:

A buffer contains a weak acid or weak base, plus the salt of that weak acid or base; or, a mixture which will have this composition after any acid-base reactions occur. You may have to calculate the number of moles of each species to determine the composition after any acid-base reaction.

> Msci 180412
> $004 \quad 10.0$ points

Assume that five weak acids, identified only by numbers ($1,2,3,4$ and 5), have the following ionization constants.

	Ionization Acid Constant K_{a} value
1	1.0×10^{-3}
2	3.0×10^{-5}
3	2.6×10^{-7}
4	4.0×10^{-9}
5	7.3×10^{-11}

The anion of which acid is the weakest base?

1. 3
2. 2
3. 1 correct
4. 4
5. 5

Explanation:

$$
\begin{aligned}
\mathrm{HA} & \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-} \\
K_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{H}][\mathrm{A}]}
\end{aligned}
$$

The 'anion of an acid' is another way of saying 'conjugate base,' and a weak conjugate base corresponds to a strong acid. So really what we're looking for is which acid is strongest (has the lowest pH).

A low pH means that the $\left[\mathrm{H}^{+}\right]$concentration is low. (Remember that values greater than 7 are basic!) The larger values of K_{a} means that there is more $\left[\mathrm{H}^{+}\right]$so you would expect these solutions to be more acidic; i.e., have smaller pH 's. The smaller K_{a} values mean less $\left[\mathrm{H}^{+}\right]$in solution, so higher pH 's. The acid with the largest $K_{\mathrm{a}}(\# 1)$ will have the lowest pH ; i.e., highest $\left[\mathrm{H}^{+}\right]$concentration

Buffer Capacity
 00510.0 points

What is the buffer capacity of 100 mL of 0.1
$\mathrm{M} \mathrm{HClO}_{2}$ and 100 mL of $0.2 \mathrm{M} \mathrm{NaClO}_{2}$?

1. 0.1 mol of OH^{-}and 0.2 mol of H^{+}
2. 10 mol of OH^{-}and 20 mol of H^{+}
3. 0.02 mol of OH^{-}and 0.01 mol of H^{+}
4. 0.2 mol of OH^{-}and 0.1 mol of H^{+}
5. 0.01 mol of OH^{-}and 0.02 mol of H^{+} correct

Explanation:

$\begin{array}{ll}V_{1}=100 \mathrm{~mL} & M_{1}=0.1 \mathrm{M} \\ V_{2}=100 \mathrm{~mL} & M_{2}=0.2 \mathrm{M}\end{array}$

Adding a strong base will introduce OH^{-}; the base will react with HA. There is only 0.01 mol of HA so only 0.01 mol of OH^{-}can be added before the buffer capacity is exceeded. Adding a strong acid introduces H^{+}; the acid will react with A^{-}. There is only 0.02 mol of A^{-}so only 0.02 mol of H^{+}can be added before exceeding buffer capacity.

Buffer Stress
 00610.0 points

What is the final pH of a solution containing 100 mL of 0.2 M HX and 300 mL of 0.1 M NaX after 0.01 mol of NaOH is added? The $\mathrm{p} K_{\mathrm{a}}$ is 3.00 .

1. 12.40

2. 3.60 correct

3. 2.40
4. 2.70
5. 3.00

Explanation:

Initially
$(100 \mathrm{~mL})(0.2 \mathrm{M})=20 \mathrm{mmol} \mathrm{HA}$
$(300 \mathrm{~mL})(0.1 \mathrm{M})=30 \mathrm{mmol} \mathrm{A}^{-}$
Now add the impurity:
0.01 mol of $\mathrm{NaOH}=10 \mathrm{mmol} \mathrm{OH}^{-}$:

Thus $\frac{\mathrm{A}^{-}}{\mathrm{HA}}=\frac{40}{10}=4$ and

$$
\mathrm{pH}=3.0+\log (4)=3.60206
$$

Titration Curve 02 00710.0 points

Consider the titration curve of a weak base with a strong acid

Volume of acid added
The pOH at point I is equal to the \qquad and the pH at point II is \qquad pH 7.

1. $\mathrm{p} K_{\mathrm{b}}$ of the base, greater than
2. pH of the base, less than
3. $\mathrm{p} K_{\mathrm{b}}$ of the base, less than correct
4. $\mathrm{p} K_{\mathrm{b}}$ of the base, equal to
5. pH of the base, greater than

Explanation:

Titration Excess Acid
00810.0 points

What is the pH of a solution containing 50 mL of $0.5 \mathrm{M} \mathrm{HNO}_{3}$ and 150 mL of 0.1 M NaOH ?

1. 1.30 correct
2. 0.30
3. 7.00
4. 2.00
5. 0.70

Explanation:

Titration End Pt 01
00910.0 points

What is the pH of a solution containing 100 mL of $0.3 \mathrm{M} \mathrm{HClO}_{3}$ and 150 mL of 0.1 M $\mathrm{Ba}(\mathrm{OH})_{2}$?

1. 9.60
2. 5.39
3. 7.00 correct
4. 13.48
5. 0.52

Explanation:
Titration Partial NH3
$010 \quad 10.0$ points
What is the pH of a solution containing 100 mL of $0.5 \mathrm{M} \mathrm{NH}_{3}$ and 200 mL of 0.1 M HCl ? The $\mathrm{p} K_{\mathrm{b}}$ of ammonia is 4.75 .

1. 9.15
2. 9.95
3. 8.72
4. 9.43 correct
5. 9.65

Explanation:

Titration End Pt NH3

01110.0 points

What is the pH of a solution containing 100 mL of $0.5 \mathrm{M} \mathrm{NH}_{3}$ and 250 mL of 0.2 M HCl ? The $\mathrm{p} K_{\mathrm{b}}$ of ammonia is 4.75 .

1. 10.10
2. 5.05 correct
3. 9.75
4. 5.28
5. 4.94

Explanation:

Arrange the compounds
I) CuS
$K_{\mathrm{sp}}=1.3 \times 10^{-36}$
II) $\mathrm{PbCl}_{2} \quad K_{\mathrm{sp}}=1.6 \times 10^{-5}$
$\begin{array}{lll}\text { III) } & \mathrm{FeS} & K_{\mathrm{sp}}=6.3 \times 10^{-18} \\ \text { IV) } & \mathrm{Hg}_{2} \mathrm{Cl}_{2} & K^{-18}=2.6 \times 10^{-18}\end{array}$
IV) $\mathrm{Hg}_{2} \mathrm{Cl}_{2} \quad K_{\text {sp }}=2.6 \times 10^{-18}$
V) $\mathrm{Cu}_{2} \mathrm{~S} \quad K_{\mathrm{sp}}=2.0 \times 10^{-47}$
in increasing order of molar solubility.

1. II, IV, III, V, I
2. V, I, IV, III, II
3. I, V, III, IV, II correct
4. I, II, III, IV, V
5. II, III, IV, I, V

Explanation:

Molar Sol Ag2S
 01310.0 points

What is the molar solubility of $\mathrm{Ag}_{2} \mathrm{~S}$? The $K_{\text {sp }}$ is 6.3×10^{-51}.

1. 2.82×10^{-13}
2. 1.16×10^{-17} correct
3. 6.37×10^{-15}
4. 7.94×10^{-26}
5. 5.8×10^{-18}

Explanation:

Molar Sol CuBr in NaBr

01410.0 points

What is the molar solubility of CuBr in 0.5 M NaBr ? The K_{sp} is 4.2×10^{-8}.

1. 3.48×10^{-3}
2. 2.05×10^{-4}
3. 4.20×10^{-8}
4. 4.20×10^{-7}

5. 8.40×10^{-8} correct

Explanation:

Weak Acid Assumptions
 $015 \quad 10.0$ points

The weak acid equation $\left[\mathrm{H}^{+}\right]=\left(K_{\mathrm{a}} C_{\mathrm{a}}\right)^{1 / 2}$ can be derived from

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right]^{3}+} & K_{\mathrm{a}}\left[\mathrm{H}^{+}\right]^{2} \\
& -\left(K_{\mathrm{w}}+K_{\mathrm{a}} C_{\mathrm{a}}\right)\left[\mathrm{H}^{+}\right]-K_{\mathrm{a}} K_{\mathrm{w}}=0
\end{aligned}
$$

if

1. K values are far apart, K_{w} is negligible and C_{a} is significantly smaller than $\left[\mathrm{H}^{+}\right]$.
2. K_{a} is negligible and C_{a} is significantly larger than $\left[\mathrm{H}^{+}\right]$.
3. K_{w} is negligible and C_{a} is significantly smaller than $\left[\mathrm{H}^{+}\right]$.
4. K values are far apart, K_{w} is negligible and C_{a} is significantly larger than $\left[\mathrm{H}^{+}\right]$. correct
5. K_{w} is negligible and C_{a} is significantly larger than $\left[\mathrm{H}^{+}\right]$.

Explanation:

Triprotic pH

$016 \quad 10.0$ points
What is the pH of a solution containing 0.2 $\mathrm{M} \mathrm{RbH}_{2} \mathrm{PO}_{4}$? The $\mathrm{pK}_{\mathrm{a} 1}$ is 2.12 , the $\mathrm{pK}_{\mathrm{a} 2}$ is 7.21, and the $\mathrm{pK}_{\mathrm{a} 3}$ is 12.68 .

1. 9.95
2. 4.67 correct
3. 7.40
4. 3.95
5. 1.41

Explanation:

$\mathrm{NaHCO}_{3}, \mathrm{NaCl}$, and HBr are dissolved in water. How many equations are needed to describe this system?

1. 6
2. 4
3. 8 correct
4. 5
5. 7

Explanation:

The species $\mathrm{Na}^{+}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$, $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{H}^{+}$, and OH^{-}will be present in the water.

Mass Balance Equation

$018 \quad 10.0$ points
0.5 M of HCOOH is dissolved in water. Which equation describes a possible mass balance equation for this system?

1. $C_{\mathrm{HCOOH}}=\left[\mathrm{HCOO}^{-}\right]+\left[\mathrm{H}^{+}\right]$
2. $C_{\mathrm{HCOOH}}=[\mathrm{HCOOH}]$
3. C_{HCOOH}

$$
=[\mathrm{HCOOH}]+\left[\mathrm{HCOO}^{-}\right]+\left[\mathrm{H}^{+}\right]
$$

4. $C_{\mathrm{HCOOH}}=[\mathrm{HCOOH}]+\left[\mathrm{HCOO}^{-}\right]$correct

$$
\text { 5. } C_{\mathrm{HCOOH}}=\left[\mathrm{HCOO}^{-}\right]
$$

Explanation:

Equil Expression
 01910.0 points

Which of the equilibrium expressions for a triprotic acid $\mathrm{H}_{3} \mathrm{~A}$ would be involved in the calculation to find the pH of a solution found from LiCaA and $\mathrm{Na}_{2} \mathrm{HA}$? Assume the K values are far apart and K_{w} is not involved in the calculation.

1. $K_{\mathrm{a} 2}$
2. $K_{\mathrm{a} 2}$ and $K_{\mathrm{a} 3}$
3. $K_{\mathrm{a} 1}$
4. $K_{\mathrm{a} 3}$ correct
5. $K_{\mathrm{a} 1}, K_{\mathrm{a} 2}$, and $K_{\mathrm{a} 3}$
6. $K_{\mathrm{a} 1}$ and $K_{\mathrm{a} 2}$

Explanation:

The salts use HA^{2-} and A^{3-}, so $K_{\mathrm{a} 3}$ is needed.

Dilute Sol 01

$020 \quad 10.0$ points
What is the pH of a solution containing 10^{-9} $\mathrm{M} \mathrm{HClO}_{4}$?

1. 6.996 correct
2. 9.000
3. 5.232
4. 8.768
5. 5.000

Explanation:

Equation Setup
 $021 \quad 10.0$ points

Which of the following is a correct expression to use to solve for $x=\left[\mathrm{SO}_{4}^{2-}\right]$ in a 0.2 M $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

1. $x \frac{2}{x}=1.1 \times 10^{-2}$
2. $x=1.1 \times 10^{-2}$
3. $x \frac{0.2}{0.2-x}=1.1 \times 10^{-2}$
4. $x \frac{0.2+x}{0.2-x}=1.1 \times 10^{-2}$ correct
5. $\frac{x^{2}}{0.2-x}=1.1 \times 10^{-2}$

Explanation:

$0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 0.2 \mathrm{M} \mathrm{H}^{+}$and $0.2 \mathrm{M} \mathrm{HSO}_{4}^{-}$, so the equilibrium occurs for

\[

\]

What is the pH of 1 M Na 3 A if $\mathrm{p} K_{\mathrm{a} 1}=2$, $\mathrm{p} K_{\mathrm{a} 2}=6$, and $\mathrm{p} K_{\mathrm{a} 3}=10$ for the triprotic acid $\mathrm{H}_{3} \mathrm{~A}$?

1. 2
2. 10
3. 12 correct
4. 11
5. 8

Explanation:

Redox Bal 01a
 02310.0 points

When the equation

$$
\mathrm{FeCl}_{3}+\mathrm{Au}(\mathrm{~s}) \rightleftharpoons \mathrm{Fe}(\mathrm{~s})+\mathrm{AuCl}
$$

is correctly balanced, what is the coefficient of FeCl_{3} ?

1. @@@
2. 2
3. 4
4. 1 correct
5. 5

Explanation:

The balanced equation is

$$
\mathrm{FeCl}_{3}+3 \mathrm{Au}(\mathrm{~s}) \rightleftharpoons \mathrm{Fe}(\mathrm{~s})+3 \mathrm{AuCl}
$$

Bal Redox in Acid

02410.0 points

For a reaction in acid involving the following two half reactions,

$$
\begin{gathered}
\mathrm{Fe}^{3+}+e^{-} \rightleftharpoons \mathrm{Fe}^{2+} \\
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 e^{-} \rightleftharpoons 2 \mathrm{Cr}^{3+}
\end{gathered}
$$

what is the coefficient for H^{+}in the balanced reaction?

1. 6
2. 14 correct
3. 1
4. 7
5. 36

Explanation:

The balanced equation is

$$
\begin{aligned}
& 14 \mathrm{H}^{+}+6 \mathrm{Fe}^{3+}+\mathrm{Cr}_{2} \mathrm{O}_{7} \underset{ }{ } \quad \underset{\mathrm{Fe}^{2+}}{\rightleftharpoons}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Ox Agent Order
 $025 \quad 10.0$ points

Arrange the agents
I) $\mathrm{Fe}^{3+}+e^{-} \rightarrow \mathrm{Fe}^{2+} \quad E_{\text {red }}^{\circ}=+0.77$
II) $\mathrm{Cu}^{2+}+e^{-} \rightarrow \mathrm{Fe}^{+} \quad E_{\text {red }}^{\circ}=+0.15$
III) $\mathrm{S}+2 e^{-} \rightarrow \mathrm{S}^{2-} \quad E_{\text {red }}^{\circ}=-0.48$
IV) $\mathrm{Mn}^{3+}+e^{-} \rightarrow \mathrm{Mn}^{2+} \quad E_{\text {red }}^{\circ}=+1.51$
V) $\mathrm{Ca}^{2+}+2 e^{-} \rightarrow \mathrm{Fe} \quad E_{\text {red }}^{\circ}=-2.87$
in increasing order of oxidizing agent strength.

1. V, IV, III, II, I
2. I, II, III, IV, V
3. III, V, IV, I, II
4. IV, I, II, III, V
5. V, III, II, I, IV correct

Explanation:

$026 \quad 10.0$ points
Consider the standard reduction potentials
$\mathrm{Cu}^{2+}+2 e^{-} \rightarrow \mathrm{Cu} \quad E^{0}=0.337 \mathrm{~V}$
$\mathrm{Ag}^{+}+1 e^{-} \rightarrow \mathrm{Ag} \quad E^{0}=0.7994 \mathrm{~V}$
$\mathrm{Au}^{+}+1 e^{-} \rightarrow \mathrm{Au}$
$E^{0}=1.68 \mathrm{~V}$
Which of the following statements about oxidizing strengths of Group IB metal ions is true?

1. Nothing can be predicted about oxidizing strengths from the data given.
2. Cu^{2+} is a stronger oxidizing agent than Ag^{+}.
3. Ag^{+}is a stronger oxidizing agent than Cu^{2+}. correct
4. Cu^{2+} is a stronger oxidizing agent than Au^{+}.
5. Ag^{+}is a stronger oxidizing agent than Au^{+}.

Explanation:

Cell Type 01
 02710.0 points

What is the cathode in

$$
\begin{array}{cr}
\mathrm{Ag}(\mathrm{~s})\left|\mathrm{Ag}^{+}(\mathrm{aq})\right|\left|\mathrm{Fe}^{2+}(\mathrm{aq})\right| \mathrm{Fe}(\mathrm{~s}) \\
\mathrm{Ag}^{+}+e^{-} \rightarrow \mathrm{Ag} & \mathcal{E}_{\text {red }}^{\circ}=+0.80 \\
\mathrm{Fe}^{2+}+2 e^{-} \rightarrow \mathrm{Fe} & \mathcal{E}_{\text {red }}^{\circ}=-0.44
\end{array}
$$

and what type cell is it?

1. $\mathrm{Ag}(\mathrm{s}) \mid \mathrm{Ag}^{+}(\mathrm{aq})$; an electrolysis cell
2. $\mathrm{Fe}^{2+}(\mathrm{aq}) \mid \mathrm{Fe}(\mathrm{s})$; a battery
3. $\mathrm{Ag}(\mathrm{s}) \mid \mathrm{Ag}^{+}(\mathrm{aq})$; a battery
4. $\mathrm{Fe}^{2+}(\mathrm{aq}) \mid \mathrm{Fe}(\mathrm{s})$; an electrolysis cell correct
5. Not enough information is provided.

Explanation:

The diagram $\mathrm{A}|\mathrm{B} \| \mathrm{C}| \mathrm{D}$ is read as follows:
$\mathrm{A} \rightarrow \mathrm{B}+n e^{-}$(oxidation)
$\mathrm{C}+m e^{-} \rightarrow \mathrm{D}$ (reduction)

Since reduction occurs at the cathode, the cathode is $\mathrm{Fe}^{2+}(\mathrm{aq}) \mid \mathrm{Fe}(\mathrm{s})$
To determine cell type, calculate \mathcal{E}° cell:

$$
\begin{array}{r}
2 \mathrm{Ag}(\mathrm{~s}) \rightarrow 2 \mathrm{Ag}^{+}(\mathrm{aq})+2 e^{-} \\
\mathcal{E}_{\text {anode }}^{\circ}=-0.80 \mathrm{~V}
\end{array}
$$

$$
\mathrm{Fe}^{2+}+2 e^{-} \rightarrow \mathrm{Fe}
$$

$$
\mathcal{E}_{\text {cathode }}^{\circ}=-0.44 \mathrm{~V}
$$

$$
2 \mathrm{Ag}(\mathrm{~s})+\mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Fe}
$$

$$
\mathcal{E}_{\text {cell }}^{\circ}=-1.24 \mathrm{~V}
$$

Since \mathcal{E}° cell is negative, the reaction is not spontaneous; potential has to be applied to the cell to enable this reaction to occur; i.e., an electrolytic cell.

> CIC T08 09
> $028 \quad 10.0$ points

In this electrochemical cell, what is the reduction half reaction?

1. $\mathrm{Zn}^{2+}(\mathrm{aq})+2 e^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$
2. $\mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 e^{-}$
3. $\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 e^{-}$
4. $\mathrm{Cu}^{2+}(\mathrm{aq})+2 e^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$ correct

Explanation:

$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$

Reduction occurs at the cathode. In this cell the reduction half reaction is

$$
\mathrm{Cu}^{2+}(\mathrm{aq})+2 e \rightarrow \mathrm{Cu}(\mathrm{~s})
$$

Cu^{2+} cations are attracted to the solid Cu electrode where they are reduced to $\mathrm{Cu}(\mathrm{s})$.

Std Cell Potential

02910.0 points

What is the $E_{\text {cell }}^{\circ}$ of

$$
\begin{array}{ll}
\mathrm{Zn}(\mathrm{~s})\left|\mathrm{Zn}^{2+}(\mathrm{aq})\right|\left|\mathrm{Ce}^{4+}(\mathrm{aq})\right| \mathrm{Ce}^{3+}(\mathrm{aq}) \\
\mathrm{Zn}^{2+}+2 e^{-} \rightarrow \mathrm{Zn} & E_{\text {red }}^{\circ}=-0.76 \\
\mathrm{Ce}^{4+}+e^{-} \rightarrow \mathrm{Ce}^{3+} & E_{\mathrm{red}}^{\circ}=+1.61
\end{array}
$$

1. +2.37 correct

2. +1.61
3. -0.85
4. +0.85
5. -2.37

Explanation:

