This print-out should have 29 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

Strong Acid or Base 001 10.0 points

Which of

I) HCl $\,$ II) HF $\,$ III) LiOH $\,$ IV) HClO $_2$ $\,$ V) HNO $_3$

are strong acids or strong bases in water?

- 1. All of the compounds
- 2. I, III, and V only correct
- 3. I, III, IV, and V only
- 4. I, II, IV, and V only
- 5. I, II, III, and V only

Explanation:

Buffer NH3

002 10.0 points

What is the pH of a solution containing 0.3 M NH₄Cl and 0.6 M NH₃? The p K_a of the ammonium ion is 9.25.

- **1.** 5.05
- **2.** 8.95
- **3.** 12.25
- **4.** 4.45
- **5.** 9.55 **correct**

Explanation:

Buffer Prep 01

003 10.0 points

Which of the following solutions will produce a buffer?

- I) 20 mL of 0.5 M $(CH_3)_3NHCl + 50$ mL of 0.1 M $(CH_3)_3N$
- II) 20 mL of 0.5 M HNO₂ + 50 mL of 0.1 M NaOH

- III) 20 mL of 0.5 M HCl + 50 mL of 0.1 M $_{
 m NH_3}$
- IV) 20 mL of 0.5 M $HClO_2 + 50$ mL of 0.1 M CH_3COOH
- V) 20 mL of 0.5 M NH₄Cl + 50 mL of 0.1 M NaOH
- 1. I, II, III, and V only
- **2.** II and IV only
- 3. I, II, and V only correct
- 4. I, II, IV, and V only
- **5.** II only

Explanation:

A buffer contains a weak acid or weak base, plus the salt of that weak acid or base; or, a mixture which will have this composition after any acid-base reactions occur. You may have to calculate the number of moles of each species to determine the composition after any acid-base reaction.

Msci 18 0412

004 10.0 points

Assume that five weak acids, identified only by numbers (1, 2, 3, 4 and 5), have the following ionization constants.

Acid	Ionization Constant $K_{\rm a}$ value
1	1.0×10^{-3}
2	3.0×10^{-5}
3	2.6×10^{-7}
4	4.0×10^{-9}
5	7.3×10^{-11}

The anion of which acid is the weakest base?

- **1.** 3
- **2.** 2
- 3. 1 correct

4. 4

5. 5

Explanation:

$$HA \rightleftharpoons H^{+} + A^{-}$$

$$K_{a} = \frac{[H^{+}][A^{-}]}{[H][A]}$$

The 'anion of an acid' is another way of saying 'conjugate base,' and a weak conjugate base corresponds to a strong acid. So really what we're looking for is which acid is strongest (has the lowest pH).

A low pH means that the [H⁺] concentration is low. (Remember that values greater than 7 are basic!) The larger values of K_a means that there is more [H⁺] so you would expect these solutions to be more acidic; i.e., have smaller pH's. The smaller K_a values mean less [H⁺] in solution, so higher pH's. The acid with the largest K_a (#1) will have the lowest pH; i.e., highest [H⁺] concentration

Buffer Capacity 005 10.0 points

What is the buffer capacity of 100 mL of 0.1 M $\rm HClO_2$ and 100 mL of 0.2 M $\rm NaClO_2$?

- 1. 0.1 mol of OH^- and 0.2 mol of H^+
- 2. 10 mol of OH^- and 20 mol of H^+
- 3. 0.02 mol of OH^- and 0.01 mol of H^+
- 4. 0.2 mol of OH^- and 0.1 mol of H^+
- **5.** 0.01 mol of OH⁻ and 0.02 mol of H⁺ correct

Explanation:

$$V_1 = 100 \text{ mL}$$
 $M_1 = 0.1 \text{ M}$ $V_2 = 100 \text{ mL}$ $M_2 = 0.2 \text{ M}$

$$\begin{array}{ccc} \text{HA} & \rightleftharpoons & \text{A}^- & + & \text{H}^+ \\ 100 \text{ mL} & 100 \text{ mL} & \\ 0.1 \text{ M} & 0.2 \text{ M} & \\ \hline 10 \text{ mmol} & 20 \text{ mmol} & \end{array}$$

Adding a strong base will introduce OH⁻; the base will react with HA. There is only 0.01 mol of HA so only 0.01 mol of OH⁻ can be added before the buffer capacity is exceeded. Adding a strong acid introduces H⁺; the acid will react with A⁻. There is only 0.02 mol of A⁻ so only 0.02 mol of H⁺ can be added before exceeding buffer capacity.

Buffer Stress

006 10.0 points

What is the final pH of a solution containing 100 mL of 0.2 M HX and 300 mL of 0.1 M NaX after 0.01 mol of NaOH is added? The p K_a is 3.00.

- **1.** 12.40
- 2. 3.60 correct
- **3.** 2.40
- **4.** 2.70
- **5.** 3.00

Explanation:

Initially

(100 mL) (0.2 M) = 20 mmol HA

 $(300 \text{ mL}) (0.1 \text{ M}) = 30 \text{ mmol A}^-$

Now add the impurity:

 $0.01 \text{ mol of NaOH} = 10 \text{ mmol OH}^-$:

Thus
$$\frac{A^-}{HA} = \frac{40}{10} = 4$$
 and

$$pH = 3.0 + \log(4) = 3.60206.$$

Titration Curve 02

007 10.0 points

Consider the titration curve of a weak base with a strong acid

Volume of acid added

The pOH at point I is equal to the ___ and the pH at point II is ___ pH 7.

- 1. pK_b of the base, greater than
- 2. pH of the base, less than
- **3.** pK_b of the base, less than **correct**
- **4.** pK_b of the base, equal to
- 5. pH of the base, greater than

Explanation:

Titration Excess Acid

008 10.0 points

What is the pH of a solution containing 50 mL of 0.5 M HNO₃ and 150 mL of 0.1 M NaOH?

- 1. 1.30 correct
- **2.** 0.30
- **3.** 7.00
- **4.** 2.00
- **5.** 0.70

Explanation:

Titration End Pt 01

009 10.0 points

What is the pH of a solution containing 100 mL of 0.3 M HClO₃ and 150 mL of 0.1 M Ba(OH)₂?

- **1.** 9.60
- **2.** 5.39
- **3.** 7.00 **correct**
- **4.** 13.48
- **5.** 0.52

Explanation:

Titration Partial NH3

010 10.0 points

What is the pH of a solution containing 100 mL of 0.5 M NH₃ and 200 mL of 0.1 M HCl? The p $K_{\rm b}$ of ammonia is 4.75.

- **1.** 9.15
- **2.** 9.95
- **3.** 8.72
- 4. 9.43 correct
- **5.** 9.65

Explanation:

Titration End Pt NH3

011 10.0 points

What is the pH of a solution containing 100 mL of 0.5 M NH₃ and 250 mL of 0.2 M HCl? The p $K_{\rm b}$ of ammonia is 4.75.

- **1.** 10.10
- 2. 5.05 correct
- **3.** 9.75
- **4.** 5.28
- **5.** 4.94

Explanation:

Solubility Order 012 10.0 points

Arrange the compounds

I) CuS
$$K_{\rm sp} = 1.3 \times 10^{-36}$$

II) PbCl₂
$$K_{\rm sp} = 1.6 \times 10^{-5}$$

III) FeS
$$K_{\rm sp} = 6.3 \times 10^{-18}$$

IV)
$$\text{Hg}_2\text{Cl}_2$$
 $K_{\text{sp}} = 2.6 \times 10^{-18}$
V) Cu_2S $K_{\text{sp}} = 2.0 \times 10^{-47}$

in increasing order of molar solubility.

$$3. I, V, III, IV, II$$
 correct

Explanation:

Molar Sol Ag2S

013 10.0 points

What is the molar solubility of Ag₂S? The $K_{\rm sp}$ is 6.3×10^{-51} .

1.
$$2.82 \times 10^{-13}$$

2.
$$1.16 \times 10^{-17}$$
 correct

3.
$$6.37 \times 10^{-15}$$

4.
$$7.94 \times 10^{-26}$$

5.
$$5.8 \times 10^{-18}$$

Explanation:

Molar Sol CuBr in NaBr

014 10.0 points

What is the molar solubility of CuBr in 0.5 M NaBr? The $K_{\rm sp}$ is 4.2×10^{-8} .

1.
$$3.48 \times 10^{-3}$$

2.
$$2.05 \times 10^{-4}$$

3.
$$4.20 \times 10^{-8}$$

4.
$$4.20 \times 10^{-7}$$

5.
$$8.40 \times 10^{-8}$$
 correct

Explanation:

Weak Acid Assumptions

015 10.0 points

The weak acid equation $[H^+] = (K_a C_a)^{1/2}$ can be derived from

$$[H^{+}]^{3} + K_{a}[H^{+}]^{2} - (K_{w} + K_{a}C_{a})[H^{+}] - K_{a}K_{w} = 0$$
if

- 1. K values are far apart, $K_{\rm w}$ is negligible and $C_{\rm a}$ is significantly smaller than [H⁺].
- **2.** $K_{\rm a}$ is negligible and $C_{\rm a}$ is significantly larger than [H⁺].
- **3.** $K_{\rm w}$ is negligible and $C_{\rm a}$ is significantly smaller than $[{\rm H}^+]$.
- **4.** K values are far apart, $K_{\rm w}$ is negligible and $C_{\rm a}$ is significantly larger than [H⁺]. **correct**
- **5.** $K_{\rm w}$ is negligible and $C_{\rm a}$ is significantly larger than [H⁺].

Explanation:

${\bf Triprotic~pH}$

016 10.0 points

What is the pH of a solution containing 0.2 M RbH₂PO₄? The pK_{a1} is 2.12, the pK_{a2} is 7.21, and the pK_{a3} is 12.68.

- **1.** 9.95
- **2.** 4.67 **correct**
- **3.** 7.40
- **4.** 3.95
- **5.** 1.41

Explanation:

Sys Treat Equil 02 017 10.0 points NaHCO₃, NaCl, and HBr are dissolved in water. How many equations are needed to describe this system?

- **1.** 6
- **2.** 4
- 3.8 correct
- **4.** 5
- **5.** 7

Explanation:

The species Na⁺, H₂CO₃, HCO₃⁻, CO₃²⁻, Cl⁻, Br⁻, H⁺, and OH⁻ will be present in the water.

Mass Balance Equation

018 10.0 points

0.5 M of HCOOH is dissolved in water. Which equation describes a possible mass balance equation for this system?

- 1. $C_{\text{HCOOH}} = [\text{HCOO}^{-}] + [\text{H}^{+}]$
- **2.** $C_{\text{HCOOH}} = [\text{HCOOH}]$
- 3. C_{HCOOH} = $[\text{HCOOH}] + [\text{HCOO}^-] + [\text{H}^+]$
- 4. $C_{\text{HCOOH}} = [\text{HCOOH}] + [\text{HCOO}^-] \text{ correct}$
 - 5. $C_{\text{HCOOH}} = [\text{HCOO}^-]$

Explanation:

Equil Expression

019 10.0 points

Which of the equilibrium expressions for a triprotic acid H_3A would be involved in the calculation to find the pH of a solution found from LiCaA and Na₂HA? Assume the K values are far apart and K_w is not involved in the calculation.

1. K_{a2}

- **2.** K_{a2} and K_{a3}
- **3.** K_{a1}
- 4. K_{a3} correct
- **5.** K_{a1} , K_{a2} , and K_{a3}
- **6.** $K_{\rm a1}$ and $K_{\rm a2}$

Explanation:

The salts use HA^{2-} and A^{3-} , so K_{a3} is needed.

Dilute Sol 01

020 10.0 points

What is the pH of a solution containing 10^{-9} M HClO₄?

- 1. 6.996 correct
- **2.** 9.000
- **3.** 5.232
- 4.8.768
- **5.** 5.000

Explanation:

Equation Setup 021 10.0 points

Which of the following is a correct expression to use to solve for $x = [SO_4^{2-}]$ in a 0.2 M H_2SO_4 solution?

1.
$$x \frac{2}{x} = 1.1 \times 10^{-2}$$

2.
$$x = 1.1 \times 10^{-2}$$

3.
$$x \frac{0.2}{0.2 - x} = 1.1 \times 10^{-2}$$

4.
$$x \frac{0.2 + x}{0.2 - x} = 1.1 \times 10^{-2}$$
 correct

5.
$$\frac{x^2}{0.2-x} = 1.1 \times 10^{-2}$$

Explanation:

 $0.2 \,\mathrm{M}\,\mathrm{H_2SO_4} \rightarrow 0.2 \,\mathrm{M}\,\mathrm{H^+} \,\mathrm{and}\,0.2 \,\mathrm{M}\,\mathrm{HSO_4^-},$ so the equilibrium occurs for

$$K_{\rm a2} = \frac{x (0.2 + x)}{0.2 - x}$$

Triprotic pH 01 10.0 points 022

What is the pH of 1 M Na₃A if $pK_{a1} = 2$, $pK_{a2} = 6$, and $pK_{a3} = 10$ for the triprotic acid H_3A ?

- **1.** 2
- **2.** 10
- 3. 12 correct
- **4.** 11
- **5.** 8

Explanation:

Redox Bal 01a

02310.0 points

When the equation

$$FeCl_3 + Au(s) \rightleftharpoons Fe(s) + AuCl$$

is correctly balanced, what is the coefficient of FeCl₃?

- 1. @@@
- **2.** 2
- **3.** 4
- 4. 1 correct
- **5.** 5

Explanation:

The balanced equation is

$$FeCl_3 + 3 Au(s) \rightleftharpoons Fe(s) + 3 AuCl$$

Bal Redox in Acid

02410.0 points

For a reaction in acid involving the following two half reactions,

$$\mathrm{Fe^{3+}} + e^{-} \rightleftharpoons \mathrm{Fe^{2+}}$$

$$\operatorname{Cr}_2\operatorname{O}_7^{2-} + 6e^- \rightleftharpoons 2\operatorname{Cr}^{3+}$$

what is the coefficient for H⁺ in the balanced reaction?

- **1.** 6
- 2. 14 correct
- **3.** 1
- **4.** 7
- **5.** 36

Explanation:

The balanced equation is

14 H⁺ + 6 Fe³⁺ + Cr₂O₇
$$\rightleftharpoons$$

6 Fe²⁺ + 2 Cr³⁺ + 7 H₂O

Ox Agent Order 10.0 points 025

- Arrange the agents
 I) ${\rm Fe^{3+}} + e^- \to {\rm Fe^{2+}}$ $E^{\circ}_{\rm red} = +0.77$ II) ${\rm Cu^{2+}} + e^- \to {\rm Fe^+}$ $E^{\circ}_{\rm red} = +0.15$ III) ${\rm S} + 2\,e^- \to {\rm S^{2-}}$ $E^{\circ}_{\rm red} = -0.48$ IV) ${\rm Mn^{3+}} + e^- \to {\rm Mn^{2+}}$ $E^{\circ}_{\rm red} = +1.51$ ${\rm Co^{2+}} + 2\,e^- \to {\rm Fe}$ $E^{\circ}_{\rm red} = -2.87$
- in increasing order of oxidizing agent strength.
- 1. V, IV, III, II, I
- **2.** I, II, III, IV, V
- **3.** III, V, IV, I, II
- 4. IV, I, II, III, V
- 5. V, III, II, I, IV correct

Explanation:

026 10.0 points

Consider the standard reduction potentials $\mathrm{Cu^{2+}} + 2~e^- \to \mathrm{Cu}$ $E^0 = 0.337~\mathrm{V}$ $\mathrm{Ag^+} + 1~e^- \to \mathrm{Ag}$ $E^0 = 0.7994~\mathrm{V}$ $\mathrm{Au^+} + 1~e^- \to \mathrm{Au}$ $E^0 = 1.68~\mathrm{V}$

Which of the following statements about oxidizing strengths of Group IB metal ions is true?

- 1. Nothing can be predicted about oxidizing strengths from the data given.
- **2.** Cu^{2+} is a stronger oxidizing agent than Ag^+ .
- **3.** Ag^+ is a stronger oxidizing agent than Cu^{2+} . **correct**
- **4.** Cu^{2+} is a stronger oxidizing agent than Au^{+} .
- **5.** Ag⁺ is a stronger oxidizing agent than Au⁺.

Explanation:

Cell Type 01

027 10.0 points

What is the cathode in

$$Ag(s)\mid Ag^+(aq)\mid\mid Fe^{2+}(aq)\mid Fe(s)$$

$$Ag^+ + e^- \rightarrow Ag$$
 $\mathcal{E}^{\circ}_{red} = +0.80$
 $Fe^{2+} + 2e^- \rightarrow Fe$ $\mathcal{E}^{\circ}_{red} = -0.44$
and what type cell is it?

- 1. $Ag(s) \mid Ag^{+}(aq)$; an electrolysis cell
- **2.** $\operatorname{Fe}^{2+}(\operatorname{aq}) \mid \operatorname{Fe}(\operatorname{s});$ a battery
- 3. $Ag(s) \mid Ag^+(aq)$; a battery
- **4.** $Fe^{2+}(aq) \mid Fe(s)$; an electrolysis cell **correct**
 - **5.** Not enough information is provided.

Explanation:

The diagram $A \mid B \mid \mid C \mid D$ is read as follows:

$$A \to B + n e^-$$
 (oxidation)
 $C + m e^- \to D$ (reduction)

Since reduction occurs at the cathode, the cathode is $Fe^{2+}(aq) \mid Fe(s)$

To determine cell type, calculate \mathcal{E}° cell:

$$\begin{split} 2\,\mathrm{Ag(s)} &\rightarrow 2\,\mathrm{Ag^+(aq)} + 2\,e^- \\ &\mathcal{E}_\mathrm{anode}^\circ = -0.80\,\,\mathrm{V} \\ \mathrm{Fe^{2+}} + 2\,e^- &\rightarrow \mathrm{Fe} \\ &\mathcal{E}_\mathrm{cathode}^\circ = -0.44\,\,\mathrm{V} \\ 2\,\mathrm{Ag(s)} + \mathrm{Fe^{2+}} &\rightarrow 2\,\mathrm{Ag^+(aq)} + \mathrm{Fe} \\ &\mathcal{E}_\mathrm{cell}^\circ = -1.24\,\,\mathrm{V} \end{split}$$

Since \mathcal{E}° cell is negative, the reaction is not spontaneous; potential has to be applied to the cell to enable this reaction to occur; *i.e.*, an electrolytic cell.

CIC T08 09 028 10.0 points

In this electrochemical cell, what is the reduction half reaction?

1.
$$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$$

2.
$$Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$$

3.
$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$$

4.
$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$
 correct

Explanation:

$$\operatorname{Zn}(s) + \operatorname{Cu}^{2+}(\operatorname{aq}) \to \operatorname{Zn}^{2+}(\operatorname{aq}) + \operatorname{Cu}(s)$$

Reduction occurs at the cathode. In this cell the reduction half reaction is

$$Cu^{2+}(aq) + 2e \rightarrow Cu(s)$$

 Cu^{2+} cations are attracted to the solid Cu electrode where they are reduced to $\mathrm{Cu}(\mathrm{s})$.

Std Cell Potential

029 10.0 points

What is the $E_{\operatorname{cell}}^{\circ}$ of

$$Zn(s) | Zn^{2+}(aq) | | Ce^{4+}(aq) | Ce^{3+}(aq)$$

$${\rm Zn^{2+}} + 2\,e^{-} \rightarrow {\rm Zn}$$
 $E_{\rm red}^{\circ} = -0.76$ ${\rm Ce^{4+}} + e^{-} \rightarrow {\rm Ce^{3+}}$ $E_{\rm red}^{\circ} = +1.61$

- 1. +2.37 correct
- **2.** +1.61
- 3. -0.85
- 4. +0.85
- 5. -2.37

Explanation: