This print-out should have 30 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. V1:1, V2:1, V3:1, V4:1, V5:2.

Please make sure you write your version numbers on your scantron. Good luck!

Strong Acid or Base

22:10, general, multiple choice, < 1 min, fixed. **001** (part 1 of 1) 6 points

Which of

I) HCl II) HF III) LiOH

IV) $HClO_2$ V) HNO_3

are strong acids or strong bases in water?

1. I, III, and V only correct

2. I, III, IV, and V only

3. I, II, III, and V only

4. All of the compounds

5. I, II, IV, and V only

Explanation:

Buffer NH3

24:02, general, multiple choice, > 1 min, fixed. **002** (part 1 of 1) 6 points What is the pH of a solution containing 0.3 M NH₄Cl and 0.6 M NH₃? The p K_a of the ammonium ion is 9.25.

1. 9.55 **correct**

2. 8.95

3. 5.05

4. 4.45

5. 12.25

Explanation:

 $\begin{array}{c} \textbf{Buffer Prep 01}\\ 24{:}02, \text{ general, multiple choice, } > 1 \text{ min, fixed.}\\ \textbf{003} \text{ (part 1 of 1) 6 points} \end{array}$

Which of the following solutions will produce a buffer?

- I) 20 mL of 0.5 M (CH₃)₃NHCl + 50 mL of 0.1 M (CH₃)₃N
- II) 20 mL of 0.5 M HNO₂ + 50 mL of 0.1 M NaOH
- III) 20 mL of 0.5 M HCl + 50 mL of 0.1 M $_{\rm NH_3}$
- IV) 20 mL of 0.5 M HClO₂ + 50 mL of 0.1 M CH₃COOH
- V) 20 mL of 0.5 M NH₄Cl + 50 mL of 0.1 M NaOH
- 1. I, II, and V only correct

2. I, II, IV, and V only

3. I, II, III, and V only

4. II and IV only

5. II only

Explanation:

Msci 18 0412

22:07, general, multiple choice, > 1 min, fixed. **004** (part 1 of 1) 6 points

Assume that five weak acids, identified only by numbers (1, 2, 3, 4 and 5), have the following ionization constants.

Acid	Ionization Constant $K_{\rm a}$ value
1	1.0×10^{-3}
2	3.0×10^{-5}
3	2.6×10^{-7}
4	4.0×10^{-9}
5	7.3×10^{-11}

The anion of which acid is the weakest base?

1. 1 correct

2. 2

3. 3

4. 4

5. 5

Explanation:

$$HA \rightleftharpoons H^{+} + A^{-}$$
$$K_{a} = \frac{[H^{+}][A^{-}]}{[H][A]}$$

The 'anion of an acid' is another way of saying 'conjugate base,' and a weak conjugate base corresponds to a strong acid. So really what we're looking for is which acid is strongest (has the lowest pH).

A low pH means that the $[H^+]$ concentration is low. (Remember that values greater than 7 are basic!) The larger values of K_a means that there is more $[H^+]$ so you would expect these solutions to be more acidic; *i.e.*, have smaller pH's. The smaller K_a values mean less $[H^+]$ in solution, so higher pH's. The acid with the largest K_a (#1) will have the lowest pH; *i.e.*, highest $[H^+]$ concentration

Buffer Capacity 01

24:04, general, multiple choice, > 1 min, fixed. **005** (part 1 of 1) 6 points What is the buffer capacity of 50 mL of 0.3 M HNO₂ and 100 mL of 0.5 M NaNO₂?

1. 0.015 mol of OH^- and 0.05 mol of H^+ correct

2. 0.05 mol of OH^- and 0.015 mol of H^+

3. $0.3 \mod \text{of OH}^- \pmod{0.5 \mod \text{of H}^+}$

4. 0.5 mol of OH^- and 0.3 mol of H^+

5. 0.15 mol of OH^- and 0.5 mol of H^+

Explanation:

Buffer Stress

24:04, general, multiple choice, > 1 min, fixed. **006** (part 1 of 1) 6 points

What is the final pH of a solution containing 100 mL of 0.2 M HClO₂ and 300 mL of 0.1

M NaClO₂ after 0.01 mol of NaOH is added? The pK_a is 2.00.

2. 1.40
 3. 1.70
 4. 2.00
 5. 11.40

Explanation:

Titration Curve 02

24:06, general, multiple choice, < 1 min, fixed. **007** (part 1 of 1) 6 points

Consider the titration curve of a weak base with a strong acid

Volume of acid added

The pOH at point I is equal to the ____ and the pH at point II is ___ pH 7.

1. pK_b of the base, less than **correct**

2. pK_b of the base, greater than

3. pH of the base, greater than

4. pH of the base, less than

5. pK_b of the base, equal to

Explanation:

ChemPrin3e T11 64

24:06, general, multiple choice, < 1 min,

wording-variable.

008 (part 1 of 1) 6 points

The titration curve for the titration of 0.5 M Na₂CO₃(aq) with 0.5 M HClO₄(aq) is given below.

What are the main species in the solution after the addition of 35 mL of HClO_4 ?

1. CO_3^{2-} , HCO_3- , Na^+ , and ClO_4^- . correct

- **2.** HCO_3^- , $H_2 CO_3$, Na^+ , and ClO_4^- .
- **3.** CO_3^{2-} , Na⁺, and ClO_4^- .
- 4. $H_2 CO_3$, Na⁺, and ClO_4^- .
- 5. HCO_3^- , Na⁺, and ClO_4^- .

Explanation:

Titration Excess Acid

24:06, general, multiple choice, > 1 min, fixed. **009** (part 1 of 1) 6 points What is the pH of a solution containing 50 mL of 0.5 M HNO₃ and 150 mL of 0.1 M NaOH?

1. 1.30 **correct**

2. 0.30

3. 7.00

4. 0.70

5. 2.00

Explanation:

Titration End Pt 01

24:06, general, multiple choice, > 1 min, fixed. **010** (part 1 of 1) 6 points What is the pH of a solution containing 100 mL of 0.3 M HClO₃ and 150 mL of 0.1 M $Ba(OH)_2$?

1. 7.00 **correct**

2. 0.52

3. 13.48

4. 5.39

5. 9.60

Explanation:

Titration Partial NH3

24:06, basic, multiple choice, > 1 min, fixed. 011 (part 1 of 1) 6 points

What is the pH of a solution containing 100 mL of 0.5 M NH₃ and 200 mL of 0.1 M HCl? The p $K_{\rm b}$ of ammonia is 4.75.

9.43 correct
 9.95
 9.65
 8.72
 9.15
 Explanation:

Titration End Pt NH3

24:06, general, multiple choice, > 1 min, fixed. **012** (part 1 of 1) 6 points

What is the pH of a solution containing 100 mL of 0.5 M NH₃ and 250 mL of 0.2 M HCl? The p $K_{\rm b}$ of ammonia is 4.75.

1.	5.05	correct
- •	0.00	0011000

2. 5.28

3. 4.94

4. 10.10

5. 9.75

Explanation:

Solubility Order

25:01, general, multiple choice, < 1 min, fixed. **013** (part 1 of 1) 6 points Arrange the compounds I) CuS $K_{\rm sp} = 1.3 \times 10^{-36}$ II) PbCl₂ $K_{\rm sp} = 1.6 \times 10^{-5}$ III) FeS $K_{\rm sp} = 6.3 \times 10^{-18}$ III) FeS $K_{\rm sp} = 6.3 \times 10^{-18}$

- IV) Hg_2Cl_2 $K_{sp} = 2.6 \times 10^{-18}$
- V) Cu_2S $K_{sp} = 2.0 \times 10^{-47}$

in increasing order of solubility.

1. I, V, III, IV, II correct

2. II, IV, III, V, I

3. II, III, IV, I, V

4. V, I, IV, III, II

5. I, II, III, IV, V

Explanation:

Molar Sol Ag2S

25:01, general, multiple choice, > 1 min, fixed. **014** (part 1 of 1) 6 points What is the molar solubility of 0.5 M Ag₂S? The $K_{\rm sp}$ is 6.3×10^{-51} .

- **1.** 1.16×10^{-17} correct
- **2.** 7.94×10^{-26}
- **3.** 2.82×10^{-13}
- **4.** 5.8×10^{-18}

5. 6.37×10^{-15}

Explanation:

Molar Sol CuBr in NaBr

25:01, general, multiple choice, > 1 min, fixed. **015** (part 1 of 1) 6 points What is the molar solubility of 0.1 M CuBr in 0.5 M NaBr? The $K_{\rm sp}$ is 4.2×10^{-8} .

1. 8.40×10^{-8} correct

2. 2.05×10^{-4}

3. 4.20×10^{-7}

4. 3.48×10^{-3}

5. 4.20×10^{-8}

Explanation:

Weak Acid Assumptions

23:01, general, multiple choice, < 1 min, fixed. 016 (part 1 of 1) 6 points

The weak acid equation $[H^+] = (K_a C_a)^{1/2}$ can be derived from $[H^+]^3 + K_a [H^+]^2$ $-(K_w + K_a C_a)[H^+] - K_a K_w = 0$ if

1. K values are far apart, $K_{\rm w}$ is negligible and $C_{\rm a}$ is significantly larger than [H⁺]. correct

2. K values are far apart, K_w is negligible and C_a is significantly smaller than [H⁺].

3. $K_{\rm w}$ is negligible and $C_{\rm a}$ is significantly larger than [H⁺].

4. $K_{\rm w}$ is negligible and $C_{\rm a}$ is significantly smaller than [H⁺].

5. $K_{\rm a}$ is negligible and $C_{\rm a}$ is significantly larger than [H⁺].

Explanation:

Triprotic pH 23:03, general, multiple choice, $> 1 \min$, fixed.

 $\begin{array}{l} \textbf{017} \ (part \ 1 \ of \ 1) \ 6 \ points \\ What \ is \ the \ pH \ of \ a \ solution \ containing \ 0.2 \\ M \ RbH_2PO_4? \ The \ pK_{a1} \ is \ 2.12, \ the \ pK_{a2} \ is \\ 7.21, \ and \ the \ pK_{a3} \ is \ 12.68. \end{array}$

 $\mathbf{1.}\ 4.67\ \mathbf{correct}$

2. 7.40

3. 9.95

4. 1.41

5. 3.95

Explanation:

Sys Treat Equil 02

25:03, general, multiple choice, > 1 min, fixed. 018 (part 1 of 1) 6 points

NaHCO₃, NaCl, and HBr are dissolved in water. How many equations are needed to describe this system?

 $\mathbf{1.8 \ correct}$

2. 7

3. 6

4. 5

5. 4

Explanation:

The species Na⁺, H₂CO₃, HCO₃⁻, CO₃²⁻, Cl⁻, Br⁻, H⁺, and OH⁻ will be present in the water.

Mass Balance Equation

25:03, general, multiple choice, < 1 min, fixed.
019 (part 1 of 1) 6 points
0.5 M of HCOOH is dissolved in water. Which equation describes a possible mass balance equation for this system?

1. $C_{\text{HCOOH}} = [\text{HCOOH}] + [\text{HCOO}^-]$ correct

2. $C_{\text{HCOOH}} = [\text{HCOO}^{-}]$

3. $C_{\text{HCOOH}} = [\text{HCOOH}]$

4.
$$C_{\text{HCOOH}}$$

= [HCOOH] + [HCOO⁻] + [H⁺]

5. $C_{\text{HCOOH}} = [\text{HCOO}^{-}] + [\text{H}^{+}]$

Explanation:

Equil Expression

23:03, general, multiple choice, < 1 min, fixed. **020** (part 1 of 1) 6 points

Which of the equilibrium expressions for a triprotic acid H_3A would be involved in the calculation to find the pH of a solution found from LiCaA and Na₂HA? Assume the K values are far apart and K_w is not involved in the calculation.

1. K_{a3} correct

- **2.** K_{a2} and K_{a3}
- **3.** K_{a1} , K_{a2} , and K_{a3}
- **4.** K_{a1} and K_{a2}
- **5.** K_{a1}

6. *K*_{a2}

Explanation:

Dilute Sol 01

23:10, general, multiple choice, > 1 min, fixed. **021** (part 1 of 1) 6 points

What is the pH of a solution containing 10^{-9} M HClO₄?

- 1. 6.996 correct
- **2.** 9.000
- **3.** 8.768
- 4.5.000
- **5.** 5.232

Explanation:

Equation Setup 23:03, general, multiple choice, $> 1 \min$, fixed. **022** (part 1 of 1) 6 points Which of the following is a correct expression

to use to solve for $x = [SO_4^{2-}]$ in a 0.2 M H_2SO_4 solution?

1.
$$x \frac{0.2 + x}{0.2 - x} = 1.1 \times 10^{-2}$$
 correct
2. $x \frac{0.2}{0.2 - x} = 1.1 \times 10^{-2}$
3. $\frac{x^2}{0.2 - x} = 1.1 \times 10^{-2}$
4. $x \frac{2}{x} = 1.1 \times 10^{-2}$
5. $x = 1.1 \times 10^{-2}$

Explanation:

Triprotic pH 01

23:03, general, multiple choice, $> 1 \min$, fixed. **023** (part 1 of 1) 6 points

What is the pH of 1 M Na₃A if $pK_{a1} = 2$, $pK_{a2} = 6$, and $pK_{a3} = 10$ for the triprotic acid H₃A?

1. 12 correct

- **2.** 2
- **3.** 8
- 4.10

5.11

Explanation:

Redox Bal 01a

26:01, general, multiple choice, < 1 min, wording-variable.

024 (part 1 of 1) 6 points When the equation

 $FeCl_3 + Au(s) \rightleftharpoons Fe(s) + AuCl$

is correctly balanced, what is the coefficient of $FeCl_3$?

1.1 correct

	9	
•	0	

2

3. 2

4. 4 **5.** 5

Explanation:

The balanced equation is

 $FeCl_3 + 3Au(s) \rightleftharpoons Fe(s) + 3AuCl$

Bal Redox in Acid

26:01, general, multiple choice, $> 1 \min$, fixed. **025** (part 1 of 1) 6 points

For a reaction in acid involving the following two half reactions.

$$\operatorname{Fe}^{3+} + e^{-} \rightleftharpoons \operatorname{Fe}^{2+}$$

$$\operatorname{Cr}_2\operatorname{O}_7^{2-} + 6 e^- \rightleftharpoons 2 \operatorname{Cr}^{3+}$$

what is the coefficient for H^+ in the balanced reaction?

1. 14 correct

2. 7
3. 6
4. 1
5. 36
Explanation:
The balanced equation \mathbf{T}_{1}^{+}

tion is $14 \text{ H}^{+} + 6 \text{ Fe}^{3+} + \text{Cr}_2 \text{O}_7 \rightleftharpoons 6 \text{ Fe}^{2+} + 2 \text{ Cr}^{3+} + 7 \text{ H}_2 \text{O}$

Ox Agent Order

26:07, general, multiple choice, $> 1 \min$, fixed. **026** (part 1 of 1) 6 points

Arrange the agents

I) $\operatorname{Fe}^{3+} + e^{-} \to \operatorname{Fe}^{2+}$ $E_{\rm red}^{\circ} = +0.77$ $E_{\rm red}^{\circ} = +0.15$ II) $\operatorname{Cu}^{2+} + e^- \to \operatorname{Fe}^+$ III) $S + 2e^- \rightarrow S^{2-}$ IV) $Mn^{3+} + e^- \rightarrow Mn^{2+}$ V) $Ca^{2+} + 2e^- \rightarrow Fe$ $\begin{aligned} E^{\circ}_{\rm red} &= -0.48\\ E^{\circ}_{\rm red} &= +1.51\\ E^{\circ}_{\rm red} &= -2.87 \end{aligned}$ in increasing order of oxidizing agent strength.

1. V, III, II, I, IV correct

2. IV, I, II, III, V

3. I, II, III, IV, V

4. V, IV, III, II, I

5. III, V, IV, I, II

Explanation:

Lyon 49740 e5 q20

26:07, general, multiple choice, > 1 min, fixed. **027** (part 1 of 1) 6 points Consider the standard reduction potentials $Cu^{2+} + 2 e^- \rightarrow Cu$ $Ag^+ + 1 e^- \rightarrow Ag$ $E^0 = 0.337 V$ $Ag^+ + 1 e^- \rightarrow Ag$ $E^0 = 0.7994 V$ $Au^+ + 1 e^- \rightarrow Au$ $E^0 = 1.68 V$

Which of the following statements about oxidizing strengths of Group IB metal ions is true?

1. Ag^+ is a stronger oxidizing agent than Cu^{2+} . correct

2. Cu^{2+} is a stronger oxidizing agent than Ag^+ .

3. Cu^{2+} is a stronger oxidizing agent than Au^+ .

4. Ag^+ is a stronger oxidizing agent than Au^+ .

5. Nothing can be predicted about oxidizing strengths from the data given.

Explanation:

Cell Type 01 26:05, general, multiple choice, < 1 min, fixed.

028 (part 1 of 1) 6 points The cathode in

$$Ag(s) | Ag^+(aq) || Fe^{2+}(aq) | Fe(s)$$

 $\begin{array}{ll} \mathrm{Ag^{+}}+e^{-}\rightarrow\mathrm{Ag} & E^{\circ}_{\mathrm{red}}=+0.80 \\ \mathrm{Fe^{2+}}+2\,e^{-}\rightarrow\mathrm{Fe} & E^{\circ}_{\mathrm{red}}=-0.44 \end{array}$

is ____. This cell is ____.

1. $\mathrm{Fe}^{2+}(\mathrm{aq}) \mid \mathrm{Fe}(\mathrm{s})$; an electrolysis cell correct

2. $\operatorname{Fe}^{2+}(\operatorname{aq}) | \operatorname{Fe}(s); a \text{ battery}$

3. $Ag(s) | Ag^+(aq);$ an electrolysis cell

4. $Ag(s) | Ag^+(aq); a battery$

5. Not enough information is provided.

Explanation:

CIC T08 09

26:05, general, multiple choice, < 1 min, fixed. **029** (part 1 of 1) 6 points

In this electrochemical cell, what is the reduction half reaction?

1. $\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \to \operatorname{Cu}(\operatorname{s})$ correct **2.** $\operatorname{Zn}(\operatorname{s}) \to \operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-}$ **3.** $\operatorname{Cu}(\operatorname{s}) \to \operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-}$ **4.** $\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \to \operatorname{Zn}(\operatorname{s})$

Explanation:

$$\operatorname{Zn}(s) + \operatorname{Cu}^{2+}(\operatorname{aq}) \to \operatorname{Zn}^{2+}(\operatorname{aq}) + \operatorname{Cu}(s)$$

Reduction occurs at the cathode. In this cell the reduction half reaction is

$$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2 e \to \operatorname{Cu}(s)$$

 Cu^{2+} cations are attracted to the solid Cu electrode where they are reduced to Cu(s).

 $\begin{array}{c} \textbf{Std Cell Potential} \\ 26:07, \text{ general, multiple choice, } < 1 \min, \text{fixed.} \\ \textbf{030} \text{ (part 1 of 1) 6 points} \\ \text{What is the } E^{\circ}_{\text{cell}} \text{ of} \end{array}$

 $\begin{aligned} & \operatorname{Zn}(s) \mid \operatorname{Zn}^{2+}(\mathrm{aq}) \mid |\operatorname{Ce}^{4+}(\mathrm{aq}) \mid \operatorname{Ce}^{3+}(\mathrm{aq}) \\ & \operatorname{Zn}^{2+} + 2 \, e^{-} \to \operatorname{Zn} \\ & \operatorname{Ce}^{4+} + e^{-} \to \operatorname{Ce}^{3+} \end{aligned} \qquad \begin{array}{l} & E_{\mathrm{red}}^{\circ} = -0.76 \\ & E_{\mathrm{red}}^{\circ} = +1.61 \end{aligned}$

1.+2.37 correct

2. -2.37

3. +0.85

- 4.-0.85
- **5.** +1.61

Explanation: