This print-out should have 30 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering. V1:1, V2:1, V3:1, V4:1, V5:2.

Please make sure you write your version numbers on your scantron. Good luck!

Strong Acid or Base

22:10, general, multiple choice, $<1 \mathrm{~min}$, fixed.
001 (part 1 of 1) 6 points
Which of
I) $\mathrm{HCl} \quad \mathrm{II}) \mathrm{HF} \quad$ III) LiOH
IV) $\mathrm{HClO}_{2} \quad$ V) HNO_{3}
are strong acids or strong bases in water?

1. I, III, and V only correct

2. I, III, IV, and V only
3. I, II, III, and V only
4. All of the compounds
5. I, II, IV, and V only

Explanation:

Buffer NH3

24:02, general, multiple choice, >1 min, fixed. 002 (part 1 of 1) 6 points
What is the pH of a solution containing 0.3 M NH 44 and $0.6 \mathrm{M} \mathrm{NH}_{3}$? The $\mathrm{p} K_{\mathrm{a}}$ of the ammonium ion is 9.25.

1. 9.55 correct
2. 8.95
3. 5.05
4. 4.45
5. 12.25

Explanation:

Buffer Prep 01

24:02, general, multiple choice, >1 min, fixed.
003 (part 1 of 1) 6 points

Which of the following solutions will produce
a buffer?
I) 20 mL of $0.5 \mathrm{M}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NHCl}+50 \mathrm{~mL}$ of $0.1 \mathrm{M}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
II) 20 mL of $0.5 \mathrm{M} \mathrm{HNO}_{2}+50 \mathrm{~mL}$ of 0.1 M NaOH
III) 20 mL of $0.5 \mathrm{M} \mathrm{HCl}+50 \mathrm{~mL}$ of 0.1 M NH_{3}
IV) 20 mL of $0.5 \mathrm{M} \mathrm{HClO}_{2}+50 \mathrm{~mL}$ of 0.1 M CH 33 COOH
V) 20 mL of $0.5 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}+50 \mathrm{~mL}$ of 0.1 M NaOH

1. I, II, and V only correct
2. I, II, IV, and V only
3. I, II, III, and V only
4. II and IV only
5. II only

Explanation:

Msci 180412
22:07, general, multiple choice, >1 min, fixed.
004 (part 1 of 1) 6 points
Assume that five weak acids, identified only by numbers ($1,2,3,4$ and 5), have the following ionization constants.

Acid	Ionization Constant K_{a} value
1	1.0×10^{-3}
2	3.0×10^{-5}
3	2.6×10^{-7}
4	4.0×10^{-9}
5	7.3×10^{-11}

The anion of which acid is the weakest base?

1. 1 correct

2. 2
3. 3
4. 4
5. 5

Explanation:

$$
\begin{aligned}
& \mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-} \\
& K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{H}][\mathrm{A}]}
\end{aligned}
$$

The 'anion of an acid' is another way of saying 'conjugate base,' and a weak conjugate base corresponds to a strong acid. So really what we're looking for is which acid is strongest (has the lowest pH).

A low pH means that the $\left[\mathrm{H}^{+}\right]$concentration is low. (Remember that values greater than 7 are basic!) The larger values of K_{a} means that there is more $\left[\mathrm{H}^{+}\right]$so you would expect these solutions to be more acidic; i.e., have smaller pH 's. The smaller K_{a} values mean less $\left[\mathrm{H}^{+}\right]$in solution, so higher pH 's. The acid with the largest $K_{\mathrm{a}}(\# 1)$ will have the lowest pH ; i.e., highest $\left[\mathrm{H}^{+}\right]$concentration

Buffer Capacity 01

24:04, general, multiple choice, >1 min, fixed. 005 (part 1 of 1) 6 points
What is the buffer capacity of 50 mL of 0.3 M HNO_{2} and 100 mL of $0.5 \mathrm{M} \mathrm{NaNO}_{2}$?

1. 0.015 mol of OH^{-}and 0.05 mol of H^{+} correct
2. 0.05 mol of OH^{-}and 0.015 mol of H^{+}
3. 0.3 mol of OH^{-}and 0.5 mol of H^{+}
4. 0.5 mol of OH^{-}and 0.3 mol of H^{+}
5. 0.15 mol of OH^{-}and 0.5 mol of H^{+}

Explanation:

Buffer Stress

24:04, general, multiple choice, >1 min, fixed. 006 (part 1 of 1) 6 points
What is the final pH of a solution containing 100 mL of $0.2 \mathrm{M} \mathrm{HClO}_{2}$ and 300 mL of 0.1

M NaClO 2 after 0.01 mol of NaOH is added? The $\mathrm{p} K_{\mathrm{a}}$ is 2.00 .

1. 2.60 correct
2. 1.40
3. 1.70
4. 2.00
5. 11.40

Explanation:

Titration Curve 02

24:06, general, multiple choice, $<1 \mathrm{~min}$, fixed.
007 (part 1 of 1) 6 points
Consider the titration curve of a weak base with a strong acid

The pOH at point I is equal to the \qquad and the pH at point II is __ pH 7 .

1. $\mathrm{p} K_{\mathrm{b}}$ of the base, less than correct
2. $\mathrm{p} K_{\mathrm{b}}$ of the base, greater than
3. pH of the base, greater than
4. pH of the base, less than
5. $\mathrm{p} K_{\mathrm{b}}$ of the base, equal to

Explanation:

ChemPrin3e T11 64
24:06, general, multiple choice, $<1 \mathrm{~min}$,
wording-variable.
008 (part 1 of 1) 6 points
The titration curve for the titration of 0.5 $\mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ with $0.5 \mathrm{M} \mathrm{HClO}_{4}(\mathrm{aq})$ is given below.

What are the main species in the solution after the addition of 35 mL of HClO_{4} ?

1. $\mathrm{CO}_{3}^{2-}, \mathrm{HCO}_{3}-, \mathrm{Na}^{+}$, and ClO_{4}^{-}. correct
2. $\mathrm{HCO}_{3}^{-}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{Na}^{+}$, and ClO_{4}^{-}.
3. $\mathrm{CO}_{3}^{2-}, \mathrm{Na}^{+}$, and ClO_{4}^{-}.
4. $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{Na}^{+}$, and ClO_{4}^{-}.
5. $\mathrm{HCO}_{3}^{-}, \mathrm{Na}^{+}$, and ClO_{4}^{-}.

Explanation:

Titration Excess Acid
24:06, general, multiple choice, $>1 \mathrm{~min}$, fixed.
009 (part 1 of 1) 6 points
What is the pH of a solution containing 50 mL of $0.5 \mathrm{M} \mathrm{HNO}_{3}$ and 150 mL of 0.1 M NaOH ?

1. 1.30 correct
2. 0.30
3. 7.00
4. 0.70
5. 2.00

Explanation:

Titration End Pt 01

24:06, general, multiple choice, $>1 \mathrm{~min}$, fixed.
010 (part 1 of 1) 6 points
What is the pH of a solution containing 100 mL of $0.3 \mathrm{M} \mathrm{HClO}_{3}$ and 150 mL of 0.1 M $\mathrm{Ba}(\mathrm{OH})_{2}$?

1. 7.00 correct
2. 0.52
3. 13.48
4. 5.39
5. 9.60

Explanation:
Titration Partial NH3
24:06, basic, multiple choice, $>1 \mathrm{~min}$, fixed.
011 (part 1 of 1) 6 points
What is the pH of a solution containing 100 mL of $0.5 \mathrm{M} \mathrm{NH}_{3}$ and 200 mL of 0.1 M HCl ? The $\mathrm{p} K_{\mathrm{b}}$ of ammonia is 4.75 .

1. 9.43 correct

2. 9.95
3. 9.65
4. 8.72
5. 9.15

Explanation:

Titration End Pt NH3
24:06, general, multiple choice, >1 min, fixed.
012 (part 1 of 1) 6 points
What is the pH of a solution containing 100 mL of $0.5 \mathrm{M} \mathrm{NH}_{3}$ and 250 mL of 0.2 M HCl ? The $\mathrm{p} K_{\mathrm{b}}$ of ammonia is 4.75 .

1. 5.05 correct
2. 5.28
3. 4.94
4. 10.10
5. 9.75

Explanation:

Solubility Order

25:01, general, multiple choice, $<1 \mathrm{~min}$, fixed.
013 (part 1 of 1) 6 points
Arrange the compounds
I) $\mathrm{CuS} \quad K_{\text {sp }}=1.3 \times 10^{-36}$
II) $\mathrm{PbCl}_{2} \quad K_{\mathrm{sp}}=1.6 \times 10^{-5}$
III) $\mathrm{FeS} \quad K_{\mathrm{sp}}=6.3 \times 10^{-18}$
IV) $\mathrm{Hg}_{2} \mathrm{Cl}_{2} \quad K_{\text {sp }}=2.6 \times 10^{-18}$
V) $\mathrm{Cu}_{2} \mathrm{~S} \quad K_{\mathrm{sp}}=2.0 \times 10^{-47}$
in increasing order of solubility.

1. I, V, III, IV, II correct
2. II, IV, III, V, I
3. II, III, IV, I, V
4. V, I, IV, III, II
5. I, II, III, IV, V

Explanation:

Molar Sol Ag2S

25:01, general, multiple choice, $>1 \mathrm{~min}$, fixed. 014 (part 1 of 1) 6 points
What is the molar solubility of $0.5 \mathrm{M} \mathrm{Ag}_{2} \mathrm{~S}$? The K_{sp} is 6.3×10^{-51}.

1. 1.16×10^{-17} correct
2. 7.94×10^{-26}
3. 2.82×10^{-13}
4. 5.8×10^{-18}
5. 6.37×10^{-15}

Explanation:

Molar Sol CuBr in NaBr
25:01, general, multiple choice, $>1 \mathrm{~min}$, fixed.
015 (part 1 of 1) 6 points
What is the molar solubility of 0.1 M CuBr in 0.5 M NaBr ? The $K_{\text {sp }}$ is 4.2×10^{-8}.

1. 8.40×10^{-8} correct
2. 2.05×10^{-4}
3. 4.20×10^{-7}
4. 3.48×10^{-3}
5. 4.20×10^{-8}

Explanation:

Weak Acid Assumptions

23:01, general, multiple choice, $<1 \mathrm{~min}$, fixed. 016 (part 1 of 1) 6 points

The weak acid equation $\left[\mathrm{H}^{+}\right]=\left(K_{\mathrm{a}} C_{\mathrm{a}}\right)^{1 / 2}$ can be derived from

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right]^{3}+} & K_{\mathrm{a}}\left[\mathrm{H}^{+}\right]^{2} \\
& -\left(K_{\mathrm{w}}+K_{\mathrm{a}} C_{\mathrm{a}}\right)\left[\mathrm{H}^{+}\right]-K_{\mathrm{a}} K_{\mathrm{w}}=0
\end{aligned}
$$

if

1. K values are far apart, K_{w} is negligible and C_{a} is significantly larger than $\left[\mathrm{H}^{+}\right]$. correct
2. K values are far apart, K_{w} is negligible and C_{a} is significantly smaller than $\left[\mathrm{H}^{+}\right]$.
3. K_{w} is negligible and C_{a} is significantly larger than $\left[\mathrm{H}^{+}\right]$.
4. K_{w} is negligible and C_{a} is significantly smaller than $\left[\mathrm{H}^{+}\right]$.
5. K_{a} is negligible and C_{a} is significantly larger than $\left[\mathrm{H}^{+}\right]$.

Explanation:

Triprotic pH

23:03, general, multiple choice, $>1 \mathrm{~min}$, fixed.

017 (part 1 of 1) 6 points
What is the pH of a solution containing 0.2 $\mathrm{M} \mathrm{RbH}_{2} \mathrm{PO}_{4}$? The $\mathrm{pK}_{\mathrm{a} 1}$ is 2.12 , the $\mathrm{pK}_{\mathrm{a} 2}$ is 7.21 , and the $\mathrm{pK}_{\mathrm{a} 3}$ is 12.68 .

1. 4.67 correct
2. 7.40
3. 9.95
4. 1.41
5. 3.95

Explanation:

Sys Treat Equil 02

25:03, general, multiple choice, >1 min, fixed.
018 (part 1 of 1) 6 points
$\mathrm{NaHCO}_{3}, \mathrm{NaCl}$, and HBr are dissolved in water. How many equations are needed to describe this system?

1. 8 correct
2. 7
3. 6
4. 5
5. 4

Explanation:

The species $\mathrm{Na}^{+}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$, $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{H}^{+}$, and OH^{-}will be present in the water.

Mass Balance Equation

25:03, general, multiple choice, <1 min, fixed.
019 (part 1 of 1) 6 points
0.5 M of HCOOH is dissolved in water. Which equation describes a possible mass balance equation for this system?

1. $C_{\mathrm{HCOOH}}=[\mathrm{HCOOH}]+\left[\mathrm{HCOO}^{-}\right]$correct
2. $C_{\mathrm{HCOOH}}=\left[\mathrm{HCOO}^{-}\right]$
3. $C_{\mathrm{HCOOH}}=[\mathrm{HCOOH}]$
4. C_{HCOOH}

$$
=[\mathrm{HCOOH}]+\left[\mathrm{HCOO}^{-}\right]+\left[\mathrm{H}^{+}\right]
$$

5. $C_{\mathrm{HCOOH}}=\left[\mathrm{HCOO}^{-}\right]+\left[\mathrm{H}^{+}\right]$

Explanation:

Equil Expression

23:03, general, multiple choice, $<1 \mathrm{~min}$, fixed. 020 (part 1 of 1) 6 points
Which of the equilibrium expressions for a triprotic acid $\mathrm{H}_{3} \mathrm{~A}$ would be involved in the calculation to find the pH of a solution found from LiCaA and $\mathrm{Na}_{2} \mathrm{HA}$? Assume the K values are far apart and K_{w} is not involved in the calculation.

1. $K_{\mathrm{a} 3}$ correct
2. $K_{\mathrm{a} 2}$ and $K_{\mathrm{a} 3}$
3. $K_{\mathrm{a} 1}, K_{\mathrm{a} 2}$, and $K_{\mathrm{a} 3}$
4. $K_{\mathrm{a} 1}$ and $K_{\mathrm{a} 2}$
5. $K_{\mathrm{a} 1}$
6. $K_{\mathrm{a} 2}$

Explanation:

Dilute Sol 01

23:10, general, multiple choice, $>1 \mathrm{~min}$, fixed.
021 (part 1 of 1) 6 points
What is the pH of a solution containing 10^{-9} M HClO_{4} ?

1. 6.996 correct
2. 9.000
3. 8.768
4. 5.000
5. 5.232

Explanation:

Equation Setup

23:03, general, multiple choice, >1 min, fixed. 022 (part 1 of 1) 6 points
Which of the following is a correct expression to use to solve for $x=\left[\mathrm{SO}_{4}^{2-}\right]$ in a 0.2 M $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

1. $x \frac{0.2+x}{0.2-x}=1.1 \times 10^{-2}$ correct
2. $x \frac{0.2}{0.2-x}=1.1 \times 10^{-2}$
3. $\frac{x^{2}}{0.2-x}=1.1 \times 10^{-2}$
4. $x \frac{2}{x}=1.1 \times 10^{-2}$
5. $x=1.1 \times 10^{-2}$

Explanation:

Triprotic pH 01

23:03, general, multiple choice, >1 min, fixed. 023 (part 1 of 1) 6 points
What is the pH of 1 M Na 33 A if $K_{\mathrm{a} 1}=2$, $\mathrm{p} K_{\mathrm{a} 2}=6$, and $\mathrm{p} K_{\mathrm{a} 3}=10$ for the triprotic acid $\mathrm{H}_{3} \mathrm{~A}$?

1. 12 correct
2. 2
3. 8
4. 10
5. 11

Explanation:

Redox Bal 01a

26:01, general, multiple choice, <1 min, wording-variable.

024 (part 1 of 1) 6 points
When the equation

$$
\mathrm{FeCl}_{3}+\mathrm{Au}(\mathrm{~s}) \rightleftharpoons \mathrm{Fe}(\mathrm{~s})+\mathrm{AuCl}
$$

is correctly balanced, what is the coefficient of FeCl_{3} ?

1. 1 correct

2. 3
3. 2
4. 4
5. 5

Explanation:

The balanced equation is

$$
\mathrm{FeCl}_{3}+3 \mathrm{Au}(\mathrm{~s}) \rightleftharpoons \mathrm{Fe}(\mathrm{~s})+3 \mathrm{AuCl}
$$

Bal Redox in Acid

26:01, general, multiple choice, $>1 \mathrm{~min}$, fixed.
025 (part 1 of 1) 6 points
For a reaction in acid involving the following two half reactions,

$$
\begin{gathered}
\mathrm{Fe}^{3+}+e^{-} \rightleftharpoons \mathrm{Fe}^{2+} \\
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 e^{-} \rightleftharpoons 2 \mathrm{Cr}^{3+}
\end{gathered}
$$

what is the coefficient for H^{+}in the balanced reaction?

1. 14 correct

2. 7

3. 6
4. 1
5. 36

Explanation:

The balanced equation is

$$
14 \mathrm{H}^{+}+6 \mathrm{Fe}^{3+}+\underset{\mathrm{Cr}_{2} \mathrm{O}_{7} \underset{\sim}{\rightleftharpoons}}{ } \quad 6 \mathrm{Fe}^{2+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

Ox Agent Order

26:07, general, multiple choice, >1 min, fixed. 026 (part 1 of 1) 6 points
Arrange the agents
I) $\mathrm{Fe}^{3+}+e^{-} \rightarrow \mathrm{Fe}^{2+} \quad E_{\text {red }}^{\circ}=+0.77$
II) $\mathrm{Cu}^{2+}+e^{-} \rightarrow \mathrm{Fe}^{+} \quad E_{\text {red }}^{\circ}=+0.15$
III) $\mathrm{S}+2 e^{-} \rightarrow \mathrm{S}^{2-} \quad E_{\text {red }}^{\circ}=-0.48$
IV) $\mathrm{Mn}^{3+}+e^{-} \rightarrow \mathrm{Mn}^{2+} \quad E_{\text {red }}^{\circ}=+1.51$
V) $\mathrm{Ca}^{2+}+2 e^{-} \rightarrow \mathrm{Fe} \quad E_{\text {red }}^{\circ}=-2.87$
in increasing order of oxidizing agent strength.

1. V, III, II, I, IV correct
2. IV, I, II, III, V
3. I, II, III, IV, V
4. V, IV, III, II, I
5. III, V, IV, I, II

Explanation:

Lyon 49740 e5 q20

26:07, general, multiple choice, $>1 \mathrm{~min}$, fixed. 027 (part 1 of 1) 6 points
Consider the standard reduction potentials $\mathrm{Cu}^{2+}+2 e^{-} \rightarrow \mathrm{Cu} \quad E^{0}=0.337 \mathrm{~V}$
$\mathrm{Ag}^{+}+1 e^{-} \rightarrow \mathrm{Ag}$
$E^{0}=0.7994 \mathrm{~V}$
$\mathrm{Au}^{+}+1 e^{-} \rightarrow \mathrm{Au}$
$E^{0}=1.68 \mathrm{~V}$
Which of the following statements about oxidizing strengths of Group IB metal ions is true?

1. Ag^{+}is a stronger oxidizing agent than Cu^{2+}. correct
2. Cu^{2+} is a stronger oxidizing agent than Ag^{+}.
3. Cu^{2+} is a stronger oxidizing agent than Au^{+}.
4. Ag^{+}is a stronger oxidizing agent than Au^{+}.
5. Nothing can be predicted about oxidizing strengths from the data given.

Explanation:

Cell Type 01

26:05, general, multiple choice,$<1 \mathrm{~min}$, fixed. 028 (part 1 of 1) 6 points
The cathode in

$$
\begin{array}{cl}
\mathrm{Ag}(\mathrm{~s})\left|\mathrm{Ag}^{+}(\mathrm{aq}) \| \mathrm{Fe}^{2+}(\mathrm{aq})\right| \mathrm{Fe}(\mathrm{~s}) \\
\mathrm{Ag}^{+}+e^{-} \rightarrow \mathrm{Ag} & E_{\mathrm{red}}^{\circ}=+0.80 \\
\mathrm{Fe}^{2+}+2 e^{-} \rightarrow \mathrm{Fe} & E_{\mathrm{red}}^{\circ}=-0.44
\end{array}
$$

is \qquad . This cell is \qquad .

1. $\mathrm{Fe}^{2+}(\mathrm{aq}) \mid \mathrm{Fe}(\mathrm{s})$; an electrolysis cell correct
2. $\mathrm{Fe}^{2+}(\mathrm{aq}) \mid \mathrm{Fe}(\mathrm{s})$; a battery
3. $\mathrm{Ag}(\mathrm{s}) \mid \mathrm{Ag}^{+}(\mathrm{aq})$; an electrolysis cell
4. $\mathrm{Ag}(\mathrm{s}) \mid \mathrm{Ag}^{+}(\mathrm{aq}) ;$ a battery
5. Not enough information is provided.

Explanation:

CIC T08 09

26:05, general, multiple choice, $<1 \mathrm{~min}$, fixed. 029 (part 1 of 1) 6 points

In this electrochemical cell, what is the reduction half reaction?

1. $\mathrm{Cu}^{2+}(\mathrm{aq})+2 e^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$ correct
2. $\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 e^{-}$
3. $\mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 e^{-}$
4. $\mathrm{Zn}^{2+}(\mathrm{aq})+2 e^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$

Explanation:

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

Reduction occurs at the cathode. In this cell the reduction half reaction is

$$
\mathrm{Cu}^{2+}(\mathrm{aq})+2 e \rightarrow \mathrm{Cu}(\mathrm{~s})
$$

Cu^{2+} cations are attracted to the solid Cu electrode where they are reduced to $\mathrm{Cu}(\mathrm{s})$.

Std Cell Potential

26:07, general, multiple choice, <1 min, fixed.
$\mathbf{0 3 0}$ (part 1 of 1) 6 points
What is the $E_{\text {cell }}^{\circ}$ of

$$
\begin{array}{ll}
\mathrm{Zn}(\mathrm{~s})\left|\mathrm{Zn}^{2+}(\mathrm{aq}) \| \mathrm{Ce}^{4+}(\mathrm{aq})\right| \mathrm{Ce}^{3+}(\mathrm{aq}) \\
\mathrm{Zn}^{2+}+2 e^{-} \rightarrow \mathrm{Zn} & E_{\mathrm{red}}^{\circ}=-0.76 \\
\mathrm{Ce}^{4+}+e^{-} \rightarrow \mathrm{Ce}^{3+} & E_{\mathrm{red}}^{\circ}=+1.61
\end{array}
$$

1. +2.37 correct
2. -2.37
3. +0.85
4. -0.85

$$
\text { 5. }+1.61
$$

Explanation:

