This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. V1:1, V2:1, V3:1, V4:1, V5:2.

You will have 20 minutes for the quiz. Please make sure you write your version numbers on your scantron. Good luck!

Mlib 07 1133

21:02, general, multiple choice, > 1 min, fixed. **001** (part 1 of 1) 5 points

What would be the expression for $K_{\rm c}$ for the reaction

$$4 \operatorname{NH}_3(g) + 5 \operatorname{O}_2(g) \rightleftharpoons 4 \operatorname{NO}(g) + 6 \operatorname{H}_2\operatorname{O}(g)$$

at equilibrium?

- **1.** $[NO]^4 [H_2O]^6$
- **2.** $[NH_3]^4 [O_2]^5$

3.
$$\frac{[\text{NO}]^4 [\text{H}_2\text{O}]^6}{[\text{NH}_3]^4 [\text{O}_2]^5} \text{ correct}$$
4.
$$\frac{[\text{NH}_3]^4 [\text{O}_2]^5}{[\text{NO}]^4 [\text{H}_2\text{O}]^6}$$
5.
$$\frac{[\text{NO}]^4 [\text{H}_2\text{O}]}{[\text{NH}_3]^4}$$

Explanation:

Msci 17 0514

21:11, general, multiple choice, > 1 min, fixed. **002** (part 1 of 1) 5 points $K_{\rm c} = 2.6 \times 10^8$ at 825 K for the reaction

 $2 H_2(g) + S_2(g) \rightleftharpoons 2 H_2S(g)$

The equilibrium concentration of H_2 is 0.0020 M and that of S_2 is 0.0010 M. What is the equilibrium concentration of H_2S ?

1. 10 M

2. 1.02 M correct

3. 0.10 M

4. 0.0010 M

Explanation:

$$K_{\rm c} = 2.6 \times 10^8$$
 [H₂]_{eq} = 0.0020 M
[S₂]_{eq} = 0.0010 M

$$2 \operatorname{H}_2(g) + \operatorname{S}_2 \rightleftharpoons 2 \operatorname{H}_2 \operatorname{S}$$

$$K_{c} = \frac{[H_{2}S]^{2}}{[H_{2}]^{2} [S_{2}]}$$

$$H_{2}S] = \sqrt{K_{c} [H_{2}]^{2} [S_{2}]}$$

$$= \sqrt{(2.6 \times 10^{8}) (0.0020 \text{ M})^{2} (0.0010 \text{ M})}$$

$$= 1.0 \text{ M}$$

Msci 17 0503

21:11, general, multiple choice, $> 1 \min$, fixed. **003** (part 1 of 1) 5 points Suppose the reaction

 $\mathbf{A}\rightleftharpoons\mathbf{B}$

has an equilibrium constant of 1.0 and the initial concentrations of A and B are 0.5 M and 0.0 M, respectively. Which of the following is the correct value for the final concentration of A?

1. 0.500 M

2. 0.250 M correct

3. 1.00 M

4. 1.50 M

5. None of these is correct.

Explanation:

$$K = 1.0 \qquad [A]_{ini} = 0.5 M$$

$$[B]_{ini} = 0 M$$

$$A \rightleftharpoons B$$

$$ini, M \qquad 0.5 \qquad 0.0$$

$$\frac{\Delta, M \qquad -x \qquad x}{eq, M \qquad 0.5 - x \qquad x}$$

$$K = \frac{[B]}{[A]} = 1.0$$

$$\frac{x}{0.5 - x} = 1.0$$

$$x = 0.25 M$$

$$[A] = 0.5 - x = 0.25 M$$

Msci 17 0509

21:11, general, multiple choice, > 1 min, fixed. **004** (part 1 of 1) 5 points

The equilibrium constant for the gaseous reaction

$$CO + H_2O \rightleftharpoons CO_2 + H_2$$

is 4.0 at a certain temperature. A reaction is carried out at this temperature starting with 2.0 mol/L of CO and $2.0 \text{ mol/L of H}_2\text{O}$. What will be the equilibrium concentration of H₂?

1. 2.0 M

2. 0.75 M

3. 1.33 M correct

4. 0.67 M

5. 1.5 M

Explanation: K = 4.0 [CO]_{ini} = 2.0 mol/L [H₂O]_{ini} = 2.0 mol/L

	CO	$+$ H ₂ O \rightleftharpoons	$\rm CO_2$	$+ H_2$
Ini, M	2	2	_	—
Δ, M	-x	-x	+x	+x
Final, M	2-x	2-x	x	x

Subsitute the final concentrations into the equation for K:

$$K = \frac{[CO_2] [H_2]}{[CO] [H_2O]}$$
$$4 = \frac{(x) (x)}{(2 - x) (2 - x)}$$
$$4 = \frac{x^2}{4 - 4x + x^2}$$
$$x^2 = 4(4 - 4x + x^2)$$
$$= 16 - 16x + 4x^2$$
$$03x^2 - 16x + 16$$

Solving the quadratic equation,

x = 1.33 or x = 4

Since all of the ratios in the reaction are one to one, you cannot end up with a greater number of moles of H₂ than 2 mol/L, so the correct value of x must be 1.33 M.

ChemPrin3e T09 44

21:10, general, multiple choice, < 1 min, fixed. **005** (part 1 of 1) 5 points

The equilibrium constant K_c for the reaction

$$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{SO}_3(g)$$

is 11.7 at 1100 K. A mixture of SO_2 , O_2 , and SO_3 , each with a concentration of 0.015 M, was introduced into a container at 1100 K. Which of the following is true?

1. $SO_2(g)$ and $O_2(g)$ will be formed until equilibrium is reached. **correct**

2. $[SO_3] = 0.045$ M at equilibrium.

3. $[SO_3] = 0.015$ M at equilibrium.

4. $SO_3(g)$ will be formed until equilibrium is reached.

5. $[SO_3] = [SO_2] = [O_2]$ at equilibrium.

Explanation:

Mlib 06 0003

21:15, general, multiple choice, > 1 min, fixed. 006 (part 1 of 1) 5 points

For the system

$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$$

at equilibrium, the addition of $H_2(g)$ would cause (according to LeChatelier's principle)

1. only more $H_2O(g)$ to form.

2. only more CO(g) to form.

3. more $H_2O(g)$ and CO(g) to form. correct

4. only more $CO_2(g)$ to form.

5. no change in amounts of products or reactants.

Explanation:

LeChatelier's Principle states that if a change in conditions occurs to a system at equilibrium, the system responds to relieve the stress and reach a new state of equilibrium. $H_2(g)$ is the stress, so the reaction moves to the right to relieve the stress, forming more H_2O and CO.

ChemPrin3e T09 71

21:15, general, multiple choice, < 1 min, fixed.
007 (part 1 of 1) 5 points
Which of the following equilibrium reactions is NOT affected by changes in pressure?

1. $2 \operatorname{BrCl}(g) \to \operatorname{Br}_2(g) + \operatorname{Cl}_2(g)$ correct

2.
$$H_2(g) + Br_2(\ell) \rightarrow 2 HBr(g)$$

3.
$$2 \operatorname{H}_2 \operatorname{O}_2(\ell) \rightarrow 2 \operatorname{H}_2 \operatorname{O}(\ell) + \operatorname{O}_2(g)$$

4. $H_2(g) + I_2(s) \rightarrow 2 HI(g)$

5.
$$2 \operatorname{CO}_2(g) \rightarrow 2 \operatorname{CO}(g) + \operatorname{O}_2(g)$$

Explanation:

ChemPrin3e T09 12

 $\begin{array}{l} 21{:}05,\, {\rm general,\, multiple\,choice,\, <1\, min,\, fixed.}\\ \mathbf{008}\,\,({\rm part\,\, 1\,\, of\,\, 1})\,\, 5\,\, {\rm points}\\ {\rm If}\,\, \Delta G^\circ = 27.1\,\, {\rm kJ}\,\, {\rm at}\,\, 25^\circ {\rm C}\,\, {\rm for\,\, the\,\, reaction}\\ {\rm CH_3COOH(aq)} + {\rm H_2O}(\ell) \rightarrow\\ {\rm CH_3COO^-(aq)} + {\rm H_3O^+(aq)\,,}\\ {\rm calculate}\,\, K_{\rm a}\,\, {\rm for\,\, this\,\, reaction\,\, at\,\, 298\,\, K.} \end{array}$

1. 1.15×10^{-11}

2. 5.63×10^4

3. 1.78×10^{-5} correct

4. 1.01

5. 9.89×10^{-1}

Explanation: