This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering. V1:1, V2:1, V3:1, V4:1, V5:2.

You will have 20 minutes for the quiz. Please make sure you write your version numbers on your scantron. Good luck!

Mlib 071133

21:02, general, multiple choice, >1 min, fixed. 001 (part 1 of 1) 5 points
What would be the expression for K_{c} for the reaction

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

at equilibrium?

1. $[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}$
2. $\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}$
3. $\frac{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}$ correct
4. $\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}$
5. $\frac{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{NH}_{3}\right]^{4}}$

Explanation:

Msci 170514

21:11, general, multiple choice, >1 min, fixed.
002 (part 1 of 1) 5 points
$K_{\mathrm{c}}=2.6 \times 10^{8}$ at 825 K for the reaction

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

The equilibrium concentration of H_{2} is 0.0020 M and that of S_{2} is 0.0010 M . What is the equilibrium concentration of $\mathrm{H}_{2} \mathrm{~S}$?

1. 10 M
2. 1.02 M correct
3. 0.10 M
4. 0.0010 M

Explanation:

$$
K_{\mathrm{c}}=2.6 \times 10^{8} \quad\left[\mathrm{H}_{2}\right]_{\mathrm{eq}}=0.0020 \mathrm{M}
$$

$$
\left[\mathrm{S}_{2}\right]_{\mathrm{eq}}=0.0010 \mathrm{M}
$$

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{~S}
$$

$$
\begin{aligned}
K_{\mathrm{c}} & =\frac{\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}}{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{~S}_{2}\right]} \\
{\left[\mathrm{H}_{2} \mathrm{~S}\right] } & =\sqrt{K_{c}\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{~S}_{2}\right]} \\
& =\sqrt{\left(2.6 \times 10^{8}\right)(0.0020 \mathrm{M})^{2}(0.0010 \mathrm{M})} \\
& =1.0 \mathrm{M}
\end{aligned}
$$

Msci 170503

21:11, general, multiple choice, >1 min, fixed.
003 (part 1 of 1) 5 points
Suppose the reaction

$$
\mathrm{A} \rightleftharpoons \mathrm{~B}
$$

has an equilibrium constant of 1.0 and the initial concentrations of A and B are 0.5 M and 0.0 M , respectively. Which of the following is the correct value for the final concentration of A?

1. 0.500 M

2. 0.250 M correct

3. 1.00 M
4. 1.50 M
5. None of these is correct.

Explanation:

$K=1.0 \quad[\mathrm{~A}]_{\text {ini }}=0.5 \mathrm{M}$
$[B]_{\text {ini }}=0 \mathrm{M}$

	A	$\rightleftharpoons \mathrm{B}$
ini, M	0.5	0.0
Δ, M	$-x$	x
eq, M	$0.5-x$	

$$
\begin{aligned}
K=\frac{[\mathrm{B}]}{[\mathrm{A}]} & =1.0 \\
\frac{x}{0.5-x} & =1.0 \\
x & =0.25 \mathrm{M}
\end{aligned}
$$

$$
[\mathrm{A}]=0.5-x=0.25 \mathrm{M}
$$

Msci 170509

21:11, general, multiple choice, >1 min, fixed.
004 (part 1 of 1) 5 points
The equilibrium constant for the gaseous reaction

$$
\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{2}+\mathrm{H}_{2}
$$

is 4.0 at a certain temperature. A reaction is carried out at this temperature starting with $2.0 \mathrm{~mol} / \mathrm{L}$ of CO and $2.0 \mathrm{~mol} / \mathrm{L}$ of $\mathrm{H}_{2} \mathrm{O}$. What will be the equilibrium concentration of H_{2} ?

1. 2.0 M
2. 0.75 M

3. 1.33 M correct

4. 0.67 M
5. 1.5 M

Explanation:

$K=4.0$

$$
[\mathrm{CO}]_{\mathrm{ini}}=2.0 \mathrm{~mol} / \mathrm{L}
$$

$\left[\mathrm{H}_{2} \mathrm{O}\right]_{\text {ini }}=2.0 \mathrm{~mol} / \mathrm{L}$

$$
\begin{array}{ccccc}
& \mathrm{CO} & +\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{CO}_{2} & +\mathrm{H}_{2} \\
\text { Ini, M } & 2 & 2 & - & - \\
\Delta, \mathrm{M} & -x & -x & +x & +x \\
\hline \text { Final, M } & 2-x & 2-x & x & x
\end{array}
$$

Subsitute the final concentrations into the equation for K :

$$
\begin{aligned}
& K=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]} \\
& 4=\frac{(x)(x)}{(2-x)(2-x)} \\
& 4=\frac{x^{2}}{4-4 x+x^{2}} \\
& x^{2}=4\left(4-4 x+x^{2}\right) \\
&=16-16 x+4 x^{2} \\
& 03 x^{2}-16 x+16
\end{aligned}
$$

Solving the quadratic equation,

$$
x=1.33 \text { or } x=4
$$

Since all of the ratios in the reaction are one to one, you cannot end up with a greater number of moles of H_{2} than $2 \mathrm{~mol} / \mathrm{L}$, so the correct value of x must be 1.33 M .

ChemPrin3e T09 44

21:10, general, multiple choice, $<1 \mathrm{~min}$, fixed.
005 (part 1 of 1) 5 points
The equilibrium constant K_{c} for the reaction

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

is 11.7 at 1100 K . A mixture of $\mathrm{SO}_{2}, \mathrm{O}_{2}$, and SO_{3}, each with a concentration of 0.015 M , was introduced into a container at 1100 K . Which of the following is true?

1. $\mathrm{SO}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ will be formed until equilibrium is reached. correct
2. $\left[\mathrm{SO}_{3}\right]=0.045 \mathrm{M}$ at equilibrium.
3. $\left[\mathrm{SO}_{3}\right]=0.015 \mathrm{M}$ at equilibrium.
4. $\mathrm{SO}_{3}(\mathrm{~g})$ will be formed until equilibrium is reached.
5. $\left[\mathrm{SO}_{3}\right]=\left[\mathrm{SO}_{2}\right]=\left[\mathrm{O}_{2}\right]$ at equilibrium.

Explanation:

Mlib 060003

21:15, general, multiple choice, $>1 \mathrm{~min}$, fixed. 006 (part 1 of 1) 5 points
For the system

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

at equilibrium, the addition of $\mathrm{H}_{2}(\mathrm{~g})$ would cause (according to LeChatelier's principle)

1. only more $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ to form.
2. only more $\mathrm{CO}(\mathrm{g})$ to form.
3. more $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ and $\mathrm{CO}(\mathrm{g})$ to form. correct
4. only more $\mathrm{CO}_{2}(\mathrm{~g})$ to form.
5. no change in amounts of products or reactants.

Explanation:

LeChatelier's Principle states that if a change in conditions occurs to a system at equilibrium, the system responds to relieve the stress and reach a new state of equilibrium. $\mathrm{H}_{2}(\mathrm{~g})$ is the stress, so the reaction moves to the right to relieve the stress, forming more $\mathrm{H}_{2} \mathrm{O}$ and CO.

ChemPrin3e T09 71

21:15, general, multiple choice, $<1 \mathrm{~min}$, fixed. 007 (part 1 of 1) 5 points
Which of the following equilibrium reactions is NOT affected by changes in pressure?

1. $2 \mathrm{BrCl}(\mathrm{g}) \rightarrow \mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ correct
2. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\ell) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$
3. $2 \mathrm{H}_{2} \mathrm{O}_{2}(\ell) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{O}_{2}(\mathrm{~g})$
4. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$
5. $2 \mathrm{CO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

Explanation:

ChemPrin3e T09 12

21:05, general, multiple choice, $<1 \mathrm{~min}$, fixed.
008 (part 1 of 1) 5 points
If $\Delta G^{\circ}=27.1 \mathrm{~kJ}$ at $25^{\circ} \mathrm{C}$ for the reaction
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow$
$\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$,
calculate K_{a} for this reaction at 298 K .

1. 1.15×10^{-11}
2. 5.63×10^{4}
3. 1.78×10^{-5} correct
4. 1.01
5. 9.89×10^{-1}

Explanation:

