[A]	[B]	[C]	rate
0.10 M	0.10 M	0.10 M	$1.4 \times 10^{-4} \mathrm{M} / \mathrm{s}$
0.20 M	0.10 M	0.10 M	$2.8 \times 10^{-4} \mathrm{M} / \mathrm{s}$
0.37 M	0.25 M	0.10 M	$8.09 \times 10^{-3} \mathrm{M} / \mathrm{s}$
0.37 M	0.25 M	0.05 M	$3.24 \times 10^{-2} \mathrm{M} / \mathrm{s}$

For the data given above, find the order of the reaction with respect to the indicated species.

1. A
2. B
3. C
4. Assume the reaction does not depend on any other species besides A, B, and C. Write the expression for the rate of the reaction in terms of the rate constant k .
5. Calculate the rate constant k .
6. If $\mathrm{A}=10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and $\mathrm{T}=298 \mathrm{~K}$, what is E_{a} for this reaction?

You start out with 1.0 M A. Assume the rate of the reaction $2 \mathrm{~A} \rightarrow \mathrm{~A}_{2}$ depends only one [A]. Assume that $A=3.4 \times 10^{8}$ (units depend on the order), $E_{a}=65 \mathrm{~kJ} / \mathrm{mol}$, and $T=298 \mathrm{~K}$. If the reaction is the given order in A, calculate the amount of A left after five minutes and the half-life of A.
7. Zeroth order
8. First order
9. Second Order
10. For a (a) zeroth, (b) first, and (c) second order reaction, a plot of \qquad vs. t is linear.
11. The reaction $3 \mathrm{~A}+5 / 2 \mathrm{~B} \rightarrow 2 \mathrm{C}+4 \mathrm{D}$ has a rate constant k of $3.7 \times 10^{-6} \mathrm{M}^{-2} \mathrm{~s}^{-1}$ at 298 K and 6.80 x $10^{-2} \mathrm{M}^{-2} \mathrm{~s}^{-1}$ at 600 K . Calculate the activation energy E_{a} for this reaction.
12. Calculate the pre-exponential factor A for the reaction in \#11.
13. What would be k for the reaction in $\# 11$ at $0^{\circ} \mathrm{C}$?
14. Write the rate expression for the following multi-step reaction.

$\mathrm{O}_{3} \rightarrow \mathrm{O}_{2}+\mathrm{O}$	fast
$\mathrm{O}+\mathrm{O}_{3} \rightarrow 2 \mathrm{O}_{2}$	slow
$2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$	overall

15. Write the rate expression for the following multi-step reaction.

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr} \rightarrow(\mathrm{CH})_{3} \mathrm{C}^{+}+\mathrm{Br}^{-} \quad \text { slow }
$$

$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}_{2}{ }^{+}$fast
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{H}_{3} \mathrm{O}^{+}$fast
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{Br}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad$ overall
16. Write the rate expression for the following multi-step reaction.

$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{H}^{+}+\mathrm{O}_{2}+2 \mathrm{Br}^{-}$	slow
$2 \mathrm{H}^{+}+2 \mathrm{Br}^{-}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{Br}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	fast
$2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{O}_{2}$	overall

17. The above plot represents the energy profile of a reaction that involves breaking an $\mathrm{O}-\mathrm{O}$ bond in terms of the $\mathrm{O}-\mathrm{O}$ bond distance (treat this is a general "reaction coordinate"). Assume this is in 1 L of solution, so $1 \mathrm{~kJ} \mathrm{M}^{-1}=1 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Approximately what is $\Delta \mathrm{G}$ for this reaction? What is E_{a} ?
18. What is E_{a} for the reverse reaction?
19. Assume the reaction described by the plot is a simple reaction of the form $\quad A \rightarrow B+C$ and is first order overall and first order in A. The reaction rate when $[\mathrm{A}]=0.235 \mathrm{M}$ is found to be 1.4×10^{-3} M / s. What is k for this reaction?
20. What is the preexponential factor A for the above reaction?

