CH 302 Spring 2008Worksheet 1 A potpourri of thermo questions to get your mind reengaged.

(Questions 1-6) Match the correct term for each question given below. You will only use an answer once, but not all the answers will be used.

Word Bank:

Standard enthalpy change	enthalpy of formation	bond enthalpy
bond order	bond energy	heat capacity
thermochemical	standard state	thermodynamics
state functions	equilibrium	empirical state

- 1. Parameters that define the current state of a chemical system.
- 2. ΔH when reactants in standard states are converted to products in standard states.
- 3. The study of energy change in chemical systems.
- 4. The energy necessary to break one mole of bonds in a gaseous substance.
- 5. The most stable state of a substance under standard pressure and temperature.
- 6. The amount of heat required to raise the temperature of an object one degree C.
- 7. Which of the following is a correct statement correct concerning the Second Law of Thermodynamics?
 - A. Energy cannot be created nor destroyed.
 - B. The entropy in the universe is conserved.
 - C. The entropy in a system increases in the phase change from liquid to gas.
 - D. The free energy of a system is temperature dependent.
- 8. Explain why the freezing of liquid water (in which the water becomes more ordered) does *not* violate the Second Law.
- 9. If you heat 1 kg of water over a Bunsen burner for a few seconds for a few seconds, it might get a little warm. So the same for 1 kg of copper, and it's likely to burn your hand. What physical quantity explains this difference?
- 10. Provide a simple derivation of the fact that ΔG is negative for a spontaneous process starting with the Second Law, $\Delta S_{universe} > 0$.
- 11. The following reaction is exothermic. For what temperatures is the reaction spontaneous? $2 A(g) + B(g) \rightarrow A_2B(g)$
- 12. Write a single equation expressing the First Law of Thermodynamics for an isolated system.
- 13. In terms of RT, what is the amount of motional (translational and rotational) internal energy in H_2O ? In CO_2 ?

- 14. For the freezing of benzene, $\Delta H = 2.375$ kJ/mol and $\Delta S = 8.523$ J/mol. What is the freezing point of benzene?
- 15. Which of the following molecules will have the largest positional entropy at 0 K?
 - A. SF_6
 - B. CH₄
 - C. CO_2
 - D. XeF₅I
 - E. CHCl₃
- 16. What is the entropy of 10 molecules of the correct answer to number 15 at 0 K?
- 17. Given the following table, which species is the most stable?

	ΔG_{f}° (kJ/mol)
$CO_2(g)$	-394.4
$NO_{2}(g)$	+51
$SO_{2}(g)$	-300.2
$H_2O(g)$	-228.60

- 18. Without using a table, give the free energy of formation for each of the following species: He(g), $N_2(g)$, C(graphite), Hg(l), Fe(s)
- 19. Find ΔGr° (at 298 K) for the following reaction, given the thermodynamic data below.

$2 \mathrm{C}_6\mathrm{H}_6(g) + 15 \mathrm{O}_2(g) \rightarrow 12 \mathrm{CO}_2(g) + 6 \mathrm{H}_2\mathrm{O}(\boldsymbol{\ell})$				
	$\Delta { m H_f}^{\circ}$	S°		
	(kJ/mol)	(J/mol)		
$C_{6}H_{6}(g)$	+82.931	269.2		
$O_2(g)$	0	205.14		
$CO_{2}(g)$	-393.51	213.74		
$H_2O(\ell)$	-285.83	69.91		

20. At a certain temperature, the work done on the following reaction is 6.00 kJ. What is this temperature? $2 A(g) + B(g) \rightarrow A_2B(g)$