## Spring 2008 CH 302 Worksheet 3

Below are listed various reactions, stresses, and reaction components. Indicate how the amount of the indicated component changes when the stress is applied.

| Reaction | Stress | Component |
| :--- | :--- | :--- |
| 1. | $3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ |  |
| Answer: The amount of $\mathrm{H}_{2}$ |  |  |
| decreases, because the reaction shifts to the right to |  |  |

Give the equation for $\mathrm{K}_{\mathrm{c}}$ for the equations given in problems 5-8.
5. $2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Answer: $\underline{K}_{c}=\left[\mathrm{H}_{2} \mathrm{O}\right]^{2} /\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]^{2}$
6. $\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$

Answer: $\underline{K}_{c}=\left[\mathrm{H}_{3} \underline{O}^{+}\right]\left[\mathrm{Cl}^{-}\right] /[\mathrm{HCl}]$
7. $\mathrm{NaCl}(\mathrm{s}) \leftrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$

Answer: $\underline{K}_{c}=\left[\mathrm{Na}^{+}\right]\left[\mathrm{Cl}^{-}\right]$(This is known as Ksp , the solubility product for NaCl .)
8. $\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})+25 / 2 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+9 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Answer: $\underline{K}_{c}=\left[\mathrm{CO}_{2}\right]^{8}\left[\mathrm{H}_{2} \mathrm{O}\right]^{9} /\left[\mathrm{C}_{8} \underline{H}_{18}\right]^{2}\left[\mathrm{O}_{2}\right]^{25 / 2}$
9. Consider the following reaction at $25^{\circ} \mathrm{C}$ :

$$
\mathrm{H}_{2}+\mathrm{I}_{2} \leftrightarrow 2 \mathrm{HI}
$$

The reaction mixture is initially prepared with $\mathrm{C}_{\mathrm{H} 2}=0.1, \mathrm{C}_{\mathrm{I} 2}=0.1$, $\mathrm{C}_{\mathrm{HI}}=0.5$. What is Q for this initial reaction mixture?

Answer: $\mathrm{Q}=\mathrm{C}_{\mathrm{HI}}{ }^{2} / \mathrm{C}_{\mathrm{H} 2} \mathrm{C}_{12}=(0.5)^{2} /(0.1 \cdot 0.1)=\underline{\mathbf{2 5}}$
10. Which direction will the reaction in number 7 shift, given $\mathrm{K}_{\mathrm{c}}=60.2$ ?

Answer: Since $\mathrm{Q}<\mathrm{Kc}$, the reaction will shift to the right.
11. For the reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

the equilibrium constant with respect to concentration, $\mathrm{K}_{\mathrm{c}}=3.8$. Calculate $\mathrm{K}_{\mathrm{p}}$ at 298 K , the equilibrium constant with respect to pressure in atm. (Note: This hasn't been covered in class yet and won't be on Tuesday's quiz.)

Answer: $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}=3.8[(0.0821 \mathrm{Latm} / \mathrm{molK})(298 \mathrm{~K})]^{2-4}=0.00635$
12. For the reaction

$$
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g}) \leftrightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s})
$$

$\Delta \mathrm{H}=-176 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{S}=-305 \mathrm{~J} / \mathrm{mol} \mathrm{K}$. What is K for this reaction a 300 K ? At 600 K ?
Answer:

$$
\begin{gathered}
\text { At } 300 \mathrm{~K}: \quad \Delta \mathrm{G}=-176 \mathrm{~kJ} / \mathrm{mol}-(300 \mathrm{~K})(-.305 \mathrm{~kJ} / \mathrm{mol} \mathrm{~K})=-84.5 \mathrm{~kJ} \\
\mathrm{~K}=\exp (-\Delta \mathrm{G} / \mathrm{RT})=\exp [-(-84500 \mathrm{~J} / \mathrm{mol}) /(8.314 \mathrm{~J} / \mathrm{mol} \mathrm{~K} \cdot 300 \mathrm{~K})]
\end{gathered}
$$

$$
K=5.17 \cdot 10^{14}
$$

At 600 K : Similar calculations yield $\mathrm{K}=\underline{\mathbf{0 . 2 4 6}}$
13. Calculate $\Delta \mathrm{G}$ for the formation of ammonia at 298 K , given $\mathrm{K}_{\mathrm{c}}=3.8$.

Answer: $\Delta \mathrm{G}=-\mathrm{RT} \ln \mathrm{K}=-(8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K})(298 \mathrm{~K}) \ln (3.8)=\underline{\mathbf{- 3 . 3 0 8} \mathbf{k J} / \mathbf{m o l}}$
14. Assume that at some temperature, the reaction given below has an equilibrium constant $\mathrm{K}_{\mathrm{p}}$ of 7.5.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, \mathrm{O}_{2}, \mathrm{CO}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$ are places in a reaction vessel, each with an initial concentration of 1 atm . What are the equilibrium pressures?

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~g})+6 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

a. $\mathrm{P}_{\mathrm{C} 6 \mathrm{H} 12 \mathrm{O} 6}=1.017, \mathrm{P}_{\mathrm{O} 2}=1.108, \mathrm{P}_{\mathrm{CO} 2}=0.892, \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=0.891$
b. $\mathrm{P}_{\mathrm{C} 6 \mathrm{H} 12 \mathrm{O} 6}=0.898, \mathrm{P}_{\mathrm{O} 2}=0.387, \mathrm{P}_{\mathrm{CO} 2}=1.613, \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=1.613$
c. $P_{\mathrm{C} 6 \mathrm{H} 12 \mathrm{O} 6}=0.981, \mathrm{P}_{\mathrm{O} 2}=0.887, \mathrm{P}_{\mathrm{CO} 2}=1.112, \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=1.112$
d. $\mathrm{P}_{\mathrm{C} 6 \mathrm{H} 12 \mathrm{O} 6}=1.465, \mathrm{P}_{\mathrm{O} 2}=1.465, \mathrm{P}_{\mathrm{CO} 2}=0.535, \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=0.535$

Answer: Plug the given values in and check. Because $\mathrm{K}>1$, answers a and d can be eliminated immediately.
15. Write an expression for $\mathrm{K}_{\mathrm{p}}$ for the reaction in problem 14 above, in terms of $x=$ the magnitude of the change in pressure of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.

Answer: $\quad K s p=\frac{(1+6 x)^{6}(1+6 x)^{6}}{(1-x)(1-6 x)^{6}}$
16. Assume that the reaction below has an equilibrium constant of 105 at some temperature. If you start out with $1 \mathrm{M} \mathrm{CO}_{2}$ and $1 \mathrm{M} \mathrm{H}_{2}$ in 3 kg of water, what is the equilibrium concentration of CO?

$$
\mathrm{CO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{aq})
$$

Answer:

| $\mathrm{CO}(\mathrm{aq})$ | $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ | $\mathrm{CO}_{2}(\mathrm{aq})$ | $\mathrm{H}_{2}(\mathrm{aq})$ |
| :---: | :---: | :---: | :---: |
| 0 | XXXXX | 1 | 1 |
| +x | XXXXX | -x | -X |
| X | XXXXX | $1-\mathrm{x}$ | $1-\mathrm{x}$ |

$$
\mathrm{K}=105=(1-\mathrm{x})(1-\mathrm{x}) / \mathrm{x}
$$

$105 \mathrm{x}=\mathrm{x}^{2}-2 \mathrm{x}+1$
$x^{2}-107 x+1=0$
By the quadratic formula, $x=107$ or $x=0.00935$. If $x=107,\left[\mathrm{CO}_{2}\right]$ and $\left[\mathrm{H}_{2}\right]$ would be negative, so $[\mathrm{CO}]=\mathrm{x}=\mathbf{0 . 0 0 9 3 5} \mathbf{M}$.
17. For the same reaction as in number 14 , imagine you have some mixture of $\mathrm{CO}, \mathrm{CO}_{2}$, and $\mathrm{H}_{2}$ in water. You know that initially $\mathrm{C}_{\mathrm{CO}}=0.0025 \mathrm{M}$ and $\mathrm{C}_{\mathrm{H} 2}=0.5 \mathrm{M}$. The equilibrium concentration of $\mathrm{CO}_{2}$ ends up being 0.005 . What are the initial and final concentrations of $\mathrm{CO}_{2}$ in this reaction?

Answer:

| CO (aq) | H2O (l) | CO2 (aq) | H2 (aq) |
| :---: | :---: | :---: | :---: |
| 0.0025 | XXXXX | X | 0.5 |
| +0.0025 | XXXXX | -0.0025 | -0.0025 |
| 0.005 | XXXXX | x-0.0025 | 0.4975 |

$\mathrm{K}=105=(\mathrm{x}-0.0025)(0.4975) /(0.005)$
$0.525=0.4975 \mathrm{x}-0.00124375$
$\mathrm{x}=1.05778$
So initial $\mathrm{C}_{\mathrm{CO} 2}=1.05778 \mathrm{M}$, final $\left[\mathrm{CO}_{2}\right]=1.05528 \mathrm{M}$
18. One mole of acetic acid is dissolved in one liter of water, following the reaction below. K for this process, known as the "acid dissociation constant" for acetic acid, is about $1.8 \times 10^{-5}$. Given that the pH of a solution is defined by
$\mathrm{pH}=-\log _{10}\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)$, what is the pH of this solution at equilibrium?
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
Answer:

| $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ <br> $(\mathrm{aq})$ | $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ | $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$ <br> $(\mathrm{aq})$ | $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ |
| :---: | :---: | :---: | :---: |
| 1 | XXXXX | 0 | 0 |
| -x | XXXXX | +x | +x |
| $1-\mathrm{x}$ | XXXXX | x | x |

$\mathrm{K}=1.8 \times 10^{-5}=\mathrm{x}^{2} /(1-\mathrm{x})$
$\left(1.8 \times 10^{-5}\right)-\left(1.8 \times 10^{-5}\right) \mathrm{x}=\mathrm{x}^{2}$
$\mathrm{x}^{2}+\left(1.8 \times 10^{-5}\right) \mathrm{x}-\left(1.8 \times 10^{-5}\right)=0$
$\mathrm{x}=0.00423 \mathrm{M}$
$\mathrm{pH}=-\log _{10}\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=-\log _{10}(\mathrm{x})=-\log _{10}(0.00423)=\underline{\mathbf{2 . 3 7}}$
19. Imagine some reaction $A \leftrightarrow A *$, which converts some species A between two forms. The reaction takes place in solution. If 1 mole of each of $A$ and $A^{*}$ is placed in 1 L of water, and K for the reaction as written is 1.5 , what is the equilibrium concentration of $\mathrm{A}^{*}$ ?

Answer:

| A | $\mathrm{A}^{*}$ |
| :---: | :---: |
| 1 | 1 |
| -x | +x |
| $1-\mathrm{x}$ | $1+\mathrm{x}$ |
| $\mathrm{K}=1.5=(1+\mathrm{x}) /(1-\mathrm{x})$ |  |

$$
1.5-1.5 x=1+x
$$

$$
.5=2.5 x
$$

$$
x=0.2
$$

$[\mathrm{A}$ * $]=1+0.2=1.2 \mathrm{M}$
20. Once the reaction in problem 19 has reached equilibrium, $90 \%$ of the $A^{*}$ is removed from the mixture, and equilibrium is reestablished. What is the new concentration of A*?

Answer:

| A | $\mathrm{A} *$ |  |
| :---: | :---: | :---: |
| 0.8 | 0.12 |  |
| -x | +x |  |
| $0.8-\mathrm{x}$ | $0.12+\mathrm{x}$ |  |
| $\mathrm{K}=1.5=(0.12+\mathrm{x}) /(0.8-\mathrm{x})$ |  |  |

$1.2-1.5 \mathrm{x}=0.12+\mathrm{x}$
$1.08=2.5 \mathrm{x}$
$\mathrm{x}=0.432$
$\left[A^{*}\right]=0.12+0.432=0.552 \mathrm{M}$

