Spring 2008 CH 302 Worksheet 3

Below are listed various reactions, stresses, and reaction components. Indicate how the amount of the indicated component changes when the stress is applied.

	Reaction	Stress	Component
1.	$3 H_2(g) + N_2(g) \leftrightarrow 2 NH_3(g)$	Addition of N ₂ gas	H ₂
	Answer: The amount of H_2 decreases, bec	cause the reaction shifts to the	e right to
	decrease the amount of N ₂ present (adding	N_2 decreases Q).	
2.	$CH_3OH(g) + 2O_2(g) \leftrightarrow CO_2(g) + 2H_2C$	D (g) Addition of heat	CH ₃ OH
	Answer: The amount of CH ₃ OH increases	s, because this combustion re	action releases
	heat; therefore, it goes in reverse to consu	me heat.	
3.	$CH_3OH(g) + H_2(g) \leftrightarrow CH_4(g) + H_2O(l)$	Addition of pressure	CH ₃ OH
	Answer: The amount of CH ₃ OH decrease	-	to the right to
	decrease the pressure in the system; remer		-
4.	$N_2(g) + O_2(g) \leftrightarrow 2 \text{ NO}(g)$	Reduction of pressure	O ₂
	Answer: The amount of O_2 does not chan	ge, because the reaction cann	not shift to
	increase the pressure in the system (there a	are equal amounts of gas on ϵ	each side).
Give the e	equation for K_c for the equations given in	problems 5-8.	
	$H_2(g) + 2 O_2(g) \leftrightarrow 2 H_2O(g)$	1	
	Answer: $\underline{\mathbf{K}_{c} = [\mathbf{H}_{2}\mathbf{O}]^{2}/[\mathbf{H}_{2}]^{2}[\mathbf{O}_{2}]^{2}}$		
6 H	$Cl(aq) + H_2O(l) \leftrightarrow H_3O^+(aq) + Cl^-(aq)$		
0. 11			
	Answer: $\underline{\mathbf{K}_{c}} = [\underline{\mathbf{H}_{3}\mathbf{O}^{+}}][\underline{\mathbf{C}\Gamma}]/[\underline{\mathbf{H}\mathbf{C}I}]$		
7 N.	$-Cl(z)$ $+ Nz^{\dagger}(zz)$ $+ Cl^{\dagger}(zz)$		
/. IN3	$aCl(s) \leftrightarrow Na^+(aq) + Cl^-(aq)$	TT .1 1 1 1 1.	
	Answer: $\underline{\mathbf{K}_{c}} = [\mathbf{Na}^{+}][\mathbf{CI}^{+}]$ (This is known	h as Ksp, the solubility pro	duct for NaCl.)
8. C_8	$_{3}H_{18}(g) + 25/2 O_{2}(g) \leftrightarrow 8 CO_{2}(g) + 9 H_{2}$		
	Answer: $\underline{\mathbf{K}_{c}} = [\underline{\mathbf{CO}_{2}}]^{8}[\underline{\mathbf{H}_{2}}\underline{\mathbf{O}}]^{9}/[\underline{\mathbf{C}_{8}}\underline{\mathbf{H}_{18}}]^{2}[\underline{\mathbf{C}_{18}}]^{1}$	O_2] ^{23/2}	
9. Co	onsider the following reaction at 25°C:		
]	$H_2 + I_2 \leftrightarrow 2 HI$	
Tł	ne reaction mixture is initially prepared w	ith $C_{H2} = 0.1$, $C_{I2} = 0.1$,	
	$_{\rm H} = 0.5$. What is Q for this initial reaction		
1	Answer: $Q = C_{HI}^2 / C_{H2} C_{I2} = (0.5)^2 / (0.5)$		
10 W	hich direction will the reaction in number	r 7 shift given $K = 60.22$	
10. **		-	
	Answer: Since $Q < Kc$, the reaction	will shift to the <u>right</u> .	
11 E	or the reaction		
11. FC			
	- (8)	$3 H_2(g) \leftrightarrow 2 NH_3(g)$	
	e equilibrium constant with respect to con		
	instant with respect to pressure in atm. (N	Note: This hasn't been cove	ered in class yet and won't be on
Τι	iesday's quiz.)		
	Answer: $K_p = K_c (RT)^{\Delta n} = 3.8[(0.082)$	21 Latm/molK)(298K)] ²⁻⁴ =	= 0.00635
12. Fc	or the reaction		
	$NH_{3}(g)$	+ HCl (g) \leftrightarrow NH ₄ Cl (s)	
АТ	$H = -176$ kJ/mol and $\Delta S = -305$ J/mol K.		n a 300 K? At 600 K?

 $\Delta H = -176 \text{ kJ/mol}$ and $\Delta S = -305 \text{ J/mol}$ K. What is K for this reaction a 300 K? At 600 K? Answer:

At 300 K: $\Delta G = -176 \text{ kJ/mol} - (300 \text{ K})(-.305 \text{ kJ/mol} \text{ K}) = -84.5 \text{ kJ}$ K = exp(- $\Delta G/RT$) = exp[-(-84500 J/mol)/(8.314 J/mol K · 300 K)]

$\frac{\mathbf{K} = 5.17 \cdot 10^{14}}{\text{At 600 K: Similar calculations yield K} = \underline{0.246}$

- 13. Calculate ΔG for the formation of ammonia at 298 K, given K_c = 3.8. Answer: ΔG = -RT ln K = -(8.314 J/mol K)(298 K) ln(3.8) = -3.308 kJ/mol
- 14. Assume that at some temperature, the reaction given below has an equilibrium constant K_p of 7.5. $C_6H_{12}O_6$, O_2 , CO_2 , and H_2O are places in a reaction vessel, each with an initial concentration of 1 atm. What are the equilibrium pressures?

 $C_6H_{12}O_6(g) + 6 O_2(g) \leftrightarrow 6 CO_2(g) + 6 H_2O(g)$

- a. $P_{C6H12O6} = 1.017, P_{O2} = 1.108, P_{CO2} = 0.892, P_{H2O} = 0.891$
- b. $P_{C6H12O6} = 0.898$, $P_{O2} = 0.387$, $P_{CO2} = 1.613$, $P_{H2O} = 1.613$
- c. $P_{C6H12O6} = 0.981$, $P_{O2} = 0.887$, $P_{CO2} = 1.112$, $P_{H2O} = 1.112$
- d. $P_{C6H12O6} = 1.465$, $P_{O2} = 1.465$, $P_{CO2} = 0.535$, $P_{H2O} = 0.535$

Answer: Plug the given values in and check. Because K > 1, answers a and d can be eliminated immediately.

- 15. Write an expression for K_p for the reaction in problem 14 above, in terms of
 - x = the magnitude of the change in pressure of $C_6H_{12}O_6$.

Answer: $Ksp = \frac{(1+6x)^6(1+6x)^6}{(1-x)(1-6x)^6}$

16. Assume that the reaction below has an equilibrium constant of 105 at some temperature. If you start out with 1 M CO₂ and 1 M H₂ in 3 kg of water, what is the equilibrium concentration of CO?

$$CO(aq) + H_2O(l) \leftrightarrow CO_2(aq) + H_2(aq)$$

CO (aq)	$H_2O(l)$	CO_2 (aq)	$H_2(aq)$		
0	XXXXX	1	1		
+x	XXXXX	-X	-X		
Х	XXXXX	1-x	1-x		
K = 105 = (1-x)(1-x)/x					
$105x = x^2 - 2x + 1$					
$x^2 - 107x + 1 = 0$					
By the quadratic formula, $x = 107$ or $x = 0.00935$. If $x = 107$, [CO ₂] and [H ₂] would be					
negative	negative, so $[CO] = x = 0.00935 M$.				

17. For the same reaction as in number 14, imagine you have some mixture of CO, CO₂, and H₂ in water. You know that initially $C_{CO} = 0.0025$ M and $C_{H2} = 0.5$ M. The equilibrium concentration of CO₂ ends up being 0.005. What are the initial and final concentrations of CO₂ in this reaction?

Answer:						
	CO (aq)	H2O (l)	CO2 (aq)	H2 (aq)		
	0.0025	XXXXX	Х	0.5		
	+0.0025	XXXXX	-0.0025	-0.0025		
	0.005	XXXXX	x-0.0025	0.4975		
K = 105 = (x-0.0025)(0.4975)/(0.005)						
0.525 = 0.4975 x - 0.00124375						
x = 1.05778						
So <u>initial C_{CO2} = 1.05778 M, final [CO₂] = 1.05528 M</u>						

18. One mole of acetic acid is dissolved in one liter of water, following the reaction below. K for this process, known as the "acid dissociation constant" for acetic acid, is about 1.8 x 10⁻⁵. Given that the pH of a solution is defined by

```
pH = -\log_{10}([H_3O^+]), what is the pH of this solution at equilibrium?
HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (aq) + H<sub>2</sub>O (1) \leftrightarrow C<sub>2</sub>H<sub>3</sub>O<sub>2</sub><sup>-</sup> (aq) + H<sub>3</sub>O<sup>+</sup> (aq)
```

Ans	wer:	、	1 / - ()			
[$HC_2H_3O_2$	$H_2O(l)$	$C_2H_3O_2^-$	$H_3O^+(aq)$		
	(aq)		(aq)			
	1	XXXXX	0	0		
	-X	XXXXX	+x	+x		
	1-x	XXXXX	Х	X		
-	$K = 1.8 \times 10^{-5} = x^2/(1-x)$					
(1.8×10^{-5}) - $(1.8 \times 10^{-5})x = x^2$						
$x^{2} + (1.8 \times 10^{-5})x - (1.8 \times 10^{-5}) = 0$						
	x = 0.00423 M					
	$pH = -\log_{10}([H_3O^+]) = -\log_{10}(x) = -\log_{10}(0.00423) = \underline{2.3}$					

19. Imagine some reaction A ↔ A*, which converts some species A between two forms. The reaction takes place in solution. If 1 mole of each of A and A* is placed in 1 L of water, and K for the reaction as written is 1.5, what is the equilibrium concentration of A*?

```
Answer:
```

```
 \begin{array}{|c|c|c|c|c|c|c|} \hline A & A^{*} \\ \hline 1 & 1 \\ \hline -x & +x \\ \hline 1-x & 1+x \\ \hline K = 1.5 = (1+x)/(1-x) \\ 1.5 - 1.5x = 1 + x \\ .5 = 2.5 x \\ x = 0.2 \\ \hline [A^{*}] = 1 + 0.2 = 1.2 M \\ \hline \end{array}
```

20. Once the reaction in problem 19 has reached equilibrium, 90% of the A* is removed from the mixture, and equilibrium is reestablished. What is the new concentration of A*?

Ans	swer:					
	А	A*				
	0.8	0.12				
	-X	+x				
	0.8-x	0.12+x				
K = 1.5 = (0.12 + x)/(0.8 - x)						
1.2 - 1.5 x = 0.12 + x						
1.08 = 2.5 x						
x = 0.432						
	$[A^*] = 0.12 + 0.432 = 0.552 \text{ M}$					