Work Sheet 8+ CH302 Spring 2008

1.

A solution is made with NaI and NaCl such that it is 0.01 M in both I⁻ and Cl⁻. To 1 L of this solution 0.01 moles Cu(NO₃) are added (you can ignore any volume change). The NaI, NaCl, and Cu(NO₃) are completely soluble (as is NaNO₃ but you already knew that). The K_{SP} for CuI is 1.3 x 10⁻¹² and for CuCl is 1.0 x10⁻⁶.

After the solution has reached equilibrium what are the concentrations of the following?

 $[Cu^+]$

[I⁻]

 $[C1^{-}]$

Are there any solid precipitates? If so how many grams of each.

2. The K_{sp} of PbCl₂ is 1.7 x 10⁻⁵. How many grams of PbCl₂ will dissolve in 100 mL of a 0.1 M NaCl solution?

3. Will CaF_2 be more soluble in acid or base?

4. Consider the following reactions

AgCN(s) --- \rightarrow Ag⁺(aq) + CN⁻(aq) K_{sp} = 1.2 x 10⁻¹⁶

 $AgCl(s) \rightarrow Ag^{+}(aq) + Cl^{-}(aq)$ $K_{sp} = 1.8 \times 10^{-10}$

HCN (aq) \longrightarrow H⁺(aq) + CN⁻(aq)

You a saturated solution of AgCN, what will the effect of each of the following (nothing, more AgCN dissolves, some AgCN precipates)

A. Adding NaCl
B. Adding HCl
C. Adding HNO₃
D. Adding KCN
E. Adding KNO₃

5. A blast from the past

$$\begin{aligned} AgBr(s) &\Leftrightarrow Ag^{+}(aq) + Br^{-}(aq) \\ Ag^{+}(aq) + 2S_{2}O_{3}^{2-}(aq) &\Leftrightarrow Ag(S_{2}O_{3})_{2}^{3-}(aq) \\ S_{2}O_{3}^{2-}(aq) + H_{3}O^{+}(aq) &\Leftrightarrow HS_{2}O_{3}^{-}(aq) + H_{2}O(l) \end{aligned}$$

What is the effect of each of these on the solubility of AgBr(s)

- Adding the soluble salt Kbr
 Adding the soluble salt Na₂S₂O₃
 Adding HCl
- 4. Adding solid AgBr