Just to be clear about Free Energy

G = H - TS

straight line assumes that H and S are independent of temperature Slope is given by S Liquid has a larger entropy and therefore a steeper slope

Principles of Chemistry II

Last Phase change

What is a key difference between evaporation and boiling?

- A. liquids only boil at I atm total pressure
- B. liquids only evaporate at room temperature
- C. bubble form in liquids when boiling

D. nothing

Principles of Chemistry II

What is enthalpy change for making a solution?

Lose solute-solute interactions (IMF) Lose solvent-solvent interactions (IMF) Gain solute-solvent interactions

Figure Copyright Houghton Mifflin Company. All rights reserved

Principles of Chemistry II

Enthalpy of Solvation $\Delta H_{solvation}$ hard to predict

 $\Delta H_{solvation} = 0$ Ideal solution
Solute-solvent interactions are identical to
solute-solute and solvent-solvent

 $\Delta H_{solvation} > 0$ Typical
Solute-solvent interactions are weaker than
solute-solute and solvent-solvent

ΔH_{solvation} < 0 Unusual but possible Solute-solvent interactions are stronger than solute-solute and solvent-solvent

Principles of Chemistry II

Solvation Demo

Principles of Chemistry II

For the dissolution of ammonium nitrate the free energy

Principles of Chemistry II

Entropy of Solvation $\Delta S_{solvation}$ usually easy to predict

Solutions have a higher entropy than the unmixed compounds

Therefore

 $\Delta S_{solvation} > 0$

For most cases

Principles of Chemistry II

Not true for small high charge density ions

Principles of Chemistry II

Gibb's Free Energy of Solvation $\Delta G_{solvation}$ If $\Delta G_{solvation} < 0$ solution strongly favored If $\Delta G_{solvation} > 0$ undissolved state is strongly favored $\Delta G_{solvation} = \Delta H_{solvation} - T \Delta S_{solvation}$ Typically $\Delta S_{solvation} > 0$, $\Delta H_{solvation} > 0$ need $|T\Delta S| > |\Delta H|$

Principles of Chemistry II

What makes an ideal solution?

Same IMF for solute-solvent and solute-solute and solvent-solvent

"like dissolves like"

Polar compounds dissolve polar compounds (ionic)

Nonpolar compound dissolve nonpolar compounds

This minimize ΔH

Which is most likely to dissolve best in hexane (C_6H_{14}) ?

Temperature Dependence

Generally at T goes up solubility increases

Principles of Chemistry II

Gas Dissolved in a Liquid

Henry's Law

TABLE	17.3	The Values	of Henry's	
Law Co	nstants	for Several	Gases	
Dissolved in Water at 298 K				

Gas	$k_{ m H}$ (atm)	
$\begin{array}{c} CH_4\\ CO_2\\ O_2\\ CO\\ H_2\\ N_2 \end{array}$	4.13×10^{2} 1.64×10^{3} 4.34×10^{4} 5.71×10^{4} 7.03×10^{4} 8.57×10^{4}	

Principles of Chemistry II

In General

Henry's Law constants increase with increasing Temperature

Less gas is dissolved at higher temperatures

∆H <0

going from no attractions to being in a liquid

Principles of Chemistry II