

Enthalpy of Solvation $\Delta H_{solvation}$ hard to predict

ΔH_{solvation} = 0 Ideal solution Solute-solvent interactions are identical to solute-solute and solvent-solvent

 $\Delta H_{\text{solvation}} > 0$ Typical Solute-solvent interactions are weaker than solute-solute and solvent-solvent

 $\Delta H_{\text{solvation}} < 0$ Unusual but possible Solute-solvent interactions are stronger than solute-solute and solvent-solvent

Principles of Chemistry II

© Vanden Bout

Solvation Demo

Principles of Chemistry II

© Vanden Bout

For the dissolution of ammonium nitrate the free energy

- A. decreases
- B. increases
- C. stays the same

Principles of Chemistry II

© Vanden Bout

Entropy of Solvation $\Delta S_{solvation}$ usually easy to predict

Solutions have a higher entropy than the unmixed compounds

Therefore

 $\Delta S_{\text{solvation}} > 0$

For most cases

Principles of Chemistry II

© Vanden Bout

Not true for small high charge density ions

TABLE 17.2 Values of $\Delta S_{\text{soln}}^{\circ}$ for Several Salts Dissolving in Water

Process
$$(J K^{-1} \text{ mol}^{-1})$$
 $KCl(s)$
 $\rightarrow K^{+}(aq) + Cl^{-}(aq)$ 75

 $LiF(s)$
 $\rightarrow Li^{+}(aq) + F^{-}(aq)$ -36

 $CaS(s)$
 $\rightarrow Ca^{2+}(aq) + S^{2-}(aq)$ -138

Principles of Chemistry II

© Vanden Bout

What makes an ideal solution?

Same IMF for solute-solvent and solute-solute and solvent-solvent

"like dissolves like"

Polar compounds dissolve polar compounds (ionic)

Nonpolar compound dissolve nonpolar compounds

This minimize ΔH

Principles of Chemistry II

© Vanden Bout

Gibb's Free Energy of Solvation $\Delta G_{solvation}$

If $\Delta G_{\text{solvation}} < 0$ solution strongly favored

If $\Delta G_{\text{solvation}} > 0$ undissolved state is strongly favored

 $\Delta G_{\text{solvation}} = \Delta H_{\text{solvation}} - T \Delta S_{\text{solvation}}$

Typically $\Delta S_{\text{solvation}} > 0$, $\Delta H_{\text{solvation}} > 0$

need $|T\Delta S| > |\Delta H|$

Principles of Chemistry II

© Vanden Bout

Miscibility Demo

Definitions:

Miscible: capable of being mixed Immiscible: incapable of bieng mixed

Principles of Chemistry II

Which is most likely to dissolve best in water?

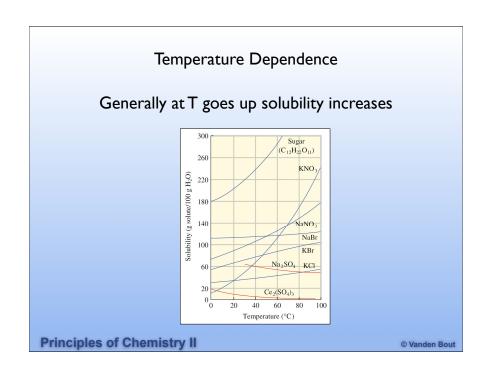
- A. methanol CH₃OH ←
- B. butanol C₄H₉OH
- C. octanol C₈H₁₇OH
- D. didodecanol C₁₂H₂₅OH

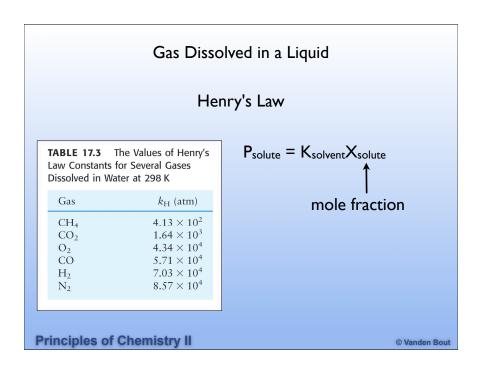
Principles of Chemistry II

© Vanden Bout

Which is most likely to dissolve best in hexane (C₆H₁₄)?

A. methanol CH₃OH


B. butanol C₄H₉OH


C. octanol C₈H₁₇OH

D. didodecanol C₁₂H₂₅OH

© Vanden Bout

Principles of Chemistry II

In General

Henry's Law constants increase with increasing Temperature

Less gas is dissolved at higher temperatures

ΔH <0

going from no attractions to being in a liquid

Principles of Chemistry II

© Vanden Bout