TABLE 6.1 Res	Li ults of Three Experiments	for the Reaction $N_2(g)$	$+ 3H_2(g) \implies 2NH_3(g)$
Experiment	Initial Concentrations	Equilibrium Concentrations	$K = \frac{[\rm NH_3]^2}{[\rm N_2][\rm H_2]^3}$
Ι	$[N_2]_0 = 1.000 M$ $[H_2]_0 = 1.000 M$ $[NH_3]_0 = 0$	$[N_2] = 0.921 M$ $[H_2] = 0.763 M$ $[NH_3] = 0.157 M$	$K = 6.02 \times 10^{-2} \text{ L}^2/\text{mol}^2$
П	$[H_2]_0 = 0$	$[N_2] = 0.399 M [H_2] = 1.197 M [NH_3] = 0.203 M$	$K = 6.02 \times 10^{-2} \text{ L}^2/\text{mol}^2$
III	$[N_2]_0 = 2.00 M$ $[H_2]_0 = 1.00 M$ $[NH_3]_0 = 3.00 M$	[112] =	$K = 6.02 \times 10^{-2} \text{ L}^2/\text{mol}^2$
			Figure Copyright Houghton M Company, All rights reserv
Each e		s different co me value for	oncentrations,
ciples of C	hemistry II		© Vanden E

Principles of Chemistry II

© Vanden Bout

Increasing Pressure
$$2NO_2(g) \longrightarrow N_2O_4(g)$$
 $\mathcal{K}_p = \frac{P_{N2O4}}{P_{NO2}^2} = \frac{X_{N2O4}}{X_{NO2}^2} \frac{P}{P^2} = \frac{X_{N2O4}}{X_{NO2}^2} \frac{P}{P}$ If you increase P
Then the mole fraction of NO2
must go down since K is constant

