Why is there equilibrium?

If the right handside of the reaction is lower in free energy why not all "products"?

If the left handside of the reaction is lower in free enrgy why not all "reactants"?

Entropy of mixing gives the mixture a slightly lower free energy than either extreme

some product + reactants will always be lower in G than all of one or the other This is only true to compounds that "mix"

gases and solutions

As a result solids and liquids do not appear in the equilibrium expression

Principles of Chemistry II

For example

$$CaCO_3(s) \longrightarrow CO(s) + CO_2(g)$$

$$K = P_{CO2}$$

No CaCO₃ or CaO they are solids for equilibrium you must have some solid but the amount doesn't matter

$$H_2O(I) \longrightarrow H^+(aq) + OH^-(aq)$$

$$K = [H^+][OH^-] \qquad (aq) \text{ is aqueon}$$

(aq) is aqueous "dissolved in water"

No H_2O its a liquid

Principles of Chemistry II

The simplest of all equilibria

Solubility

$$MX(s) \longrightarrow M^{+}(aq) + X^{-}(aq)$$

 $K = [M^+][X^-]$

special name "solubility product"

 $K_{sp} = [M^+][X^-]$

Principles of Chemistry II

Easy to solve							
$MX_2(s) \longleftrightarrow M^+(aq) + 2X^-(aq)$							
	_						
	R	M+	Х-				
	I	0	Ο	none in solution			
	С	+x	+2x	none in solution			
	E	+x	+2x	equilibrium is easy			
	$K = \Gamma M^{+} \Gamma Y^{-12} = (Y) (2Y)^{2} = 4Y^{3}$						

For the following reaction $\Delta_R G^\circ = -542 \text{ kJ mol}^{-1}$ at 298K If I start out with a contain that has a pressure of I atm of H₂(g) and I atm of F₂(g), at equilibrium what will the partial pressure of HF(g) be?

 $H_2(g) + F_2(g) \longrightarrow 2HF(g)$

Principles of Chemistry II

For the following reaction $\Delta_R G^\circ = +740 \text{ kJ mol}^{-1}$ at 298K If I start out with a contain that has a pressure of I mole of Fe₂O₃, at equilibrium how much solid Fe will I have?

 $Fe_2O_3(s) \longrightarrow 2Fe(s) + (3/2)O_2(g)$

Α.	approximately 0 moles	
B.	approximatley I moles	K is really really small
C.	approximately 2 moles	~"no products"
D.	approximately 3/2 moles	
E.	there is no way to know	

Principles of Chemistry II

For the following reaction what is the change value for H_2O ?							
	$2C_2H_6(g) + 7O_2(g) \longrightarrow 4CO_2(g) + 6H_2O(g)$						
	R	C_2H_6	O ₂	CO ₂	H ₂ O		
	I	1.0	1.4	1.8	0		
	С	-2x	?	?	?		
]
A.	-2x						
B.	+2x						
C.	+3x						
D.	+6x						

For the following reaction what is the equilibrium value for CO_2 ?							
$2C_2H_6(g) + 7O_2(g) \longrightarrow 4CO_2(g) + 6H_2O(g)$							
	R	C_2H_6	O ₂	CO ₂	H ₂ O		
	I	1.0	1.4	1.8	0		
	С	5	?	?	?		
	E	?	?	?	?		
A.	2.0				-2x = -0.5		
В.	I.4			L	x=0.25 .8+4x = 2.8		
C.	2.8						
D.	1.8 +	- 4x					

$$H_2O(I) \rightarrow H^+(aq) + OH^-(aq)$$

$$K_w = [H^+][OH^-] = 10^{-14}$$

In water what is the concentration of [H⁺]?

$$H_2O(I) \leftrightarrow H^+(aq) + OH^-(aq)$$

$K_w = [H^+][OH^-] = 10^{-14}$

Principles of Chemistry II

Pure Water						
		H+	OH-			
	I	0	Ο			
	С	+x	+x			
	E	+x	+x			
	$K_w = 10^{-14} = [H^+][OH^-] = (x)(x)$					
x = 10 ⁻⁷ [H ⁺]=[OH ⁻]=10 ⁻⁷						
P	Principles of Chemistry II © Vanden Bout					

рH					
Log scale. Useful when dealing with very small or very large number (big ranges of numbers) every "pH" unit is 10x larger or smaller [H ⁺]					
$pH = -log[H^+]$					
PH= 13 [H ⁺] =10 ⁻¹³	рН= 7 [H ⁺] =10 ⁻⁷	pH= 2 [H ⁺] =10 ⁻²			
Principles of Chemistry	/ 11	© Vanden Bout			

Acids and Bases

Brønsted-Lowry Definition

Acid is a proton (H⁺) donor

Base is a proton (H^+) acceptor

Principles of Chemistry II

For example Hydrochloric Acid (HCI)

Principles of Chemistry II

pH of pure water at 25°C						
$x = 10^{-7} [H^+] = [OH^-] = 10^{-7}$						
$pH = -log[H^+] = -log(10^{-7}) = 7$						
Neutral	Acidic	Basic				
[H ⁺]=[OH ⁻]	[H ⁺]>[OH ⁻]	[H ⁺]<[OH ⁻]				
at 25°C	at 25°C	at 25°C				
рН = 7 рОН = 7	рН < 7 рОН > 7	рН > 7 рОН > 7				

$$H_2O(I) \longrightarrow H^+(aq) + OH^-(aq)$$

This reaction is endothermic. Given that information what do you think the pH is for pure water at 60°C?

Principles of Chemistry II