

Principles of Chemistry II

What is the pH of a 0.5M solution of barium hydroxide?

Principles of Chemistry II

What is the pOH of a 0.5M solution of barium hydroxide?

Principles of Chemistry II

Which of the following is the most acidic?

- A. acetic acid $Ka = 1.8 \times 10^{-5}$
- B. hydrofluoric acid Ka = 7.2×10^{-4} \leftarrow largest K_a
- C. hydrocyanic acid Ka = 6.2×10^{-10}
- D. nitrous acid Ka = 4.0×10^{-4}

Principles of Chemistry II

Which of the following is the most basic?

A. ammonia $Kb = 1.8 \times 10^{-5}$

B. methyl amine Kb =
$$4.38 \times 10^{-4}$$

C. ethyl amine Kb = 5.6 x 10⁻⁴
$$\leftarrow$$
 largest K_b

D. pyridine Kb =
$$1.7 \times 10^{-9}$$

Principles of Chemistry II

Which of the following is the most basic?

A.	acetate	acetic acid Ka = 1.8 x 10 ⁻⁵
B.	fluoride	hydrofluoric acid Ka = 7.2×10^{-4}
C.	cyanide	hydrocyanic acid Ka = 6.2 x 10 ⁻¹⁰ ←
D.	nitrite	nitrous acid Ka = 4.0 x 10 ⁻⁴ smallest Ka will be largest
		K _b

Principles of Chemistry II

Converting Ka to Kb

$$HA(aq) \longrightarrow H^{+}(aq) + A^{-}(aq)$$

$$\kappa_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$

$$A^{-}(aq) + H_{2}O(I) \longrightarrow HA(aq) + OH^{-}(aq)$$

$$\kappa_{b} = \frac{[OH^{-}][HA]}{[A^{-}]}$$

$$K_{a} \times K_{b} = \frac{[H^{+}][A^{-}]}{[HA]} \times \frac{[OH^{-}][HA]}{[A^{-}]} = [H^{+}][OH^{-}] = K_{w}$$

Principles of Chemistry II

 K_a for benzoic acid is 6 x 10⁻⁵, what is K_b for the benzoate ion?

Principles of Chemistry II

Which is the most soluble?

- A. Aluminum Hydroxide AI(OH)₃ $K_{sp} = 3 \times 10^{-34}$
- B. Barium Fluoride $BaF_2 K_{sp} = 1.8 \times 10^{-7}$
- C. Calcium Sulfate $Ca(SO_4)$ $K_{sp} = 5 \times 10^{-5}$

What is the solubility of ScF₃?
ScF₃ (s)
$$\longleftrightarrow$$
 Sc³⁺(aq) + 3F⁻(aq)
 $K_{sp} = [Sc^{3+}][F-]^3 = 4.2 \times 10^{-18}$
ScF₃ Sc³⁺ F⁻ K = $[Sc^{3+}][F-]^3$
I n_{solid} 0 0 K = (x)(3x)^3
C -x +x +3x K = 27x⁴ = 4.2 × 10⁻¹⁸
E n-x +x +3x x = 1.99 × 10⁻⁵
 $x = [Sc^{3+}]$
x is also the number of moles of ScF₃ that dissolve
molar solubility 1.99 × 10⁻⁵ moles/L
solubility 2 × 10⁻³ g/L

Same solution

When you have only one compound in water What you need to know if the "generic formula"

MX
$$K_{sp} = [M^+][X^-] = x^2$$
 $x = (K_{sp})^{1/2}$
MX₂ $K_{sp} = [M^+][X^-]^2 = 4x^3$ $x = (K_{sp}/4)^{1/3}$

MX₃ $K_{sp} = [M^+][X^-]^3 = 27x^4$ $x = (K_{sp}/27)^{1/4}$

Which is the most soluble?

Neutralization I can either have large concentrations of H⁺ or OH⁻

but never both

The will reaction to get back to equilibrium

 $H^{+}(aq) + OH^{-}(aq) \leftrightarrow H_{2}O(I)$

Principles of Chemistry II

To solve we neutralize until all of one of them is gone

Acid no OH⁻ Base no H⁺

then we use the equilibrium expression to find the very small concentration left behind

Principles of Chemistry II

How many moles of "excess" H⁺ does this solution have?

What is the $[H^+]$ of this solution

Principles of Chemistry II

What is the pH of this solution?

Principles of Chemistry II

What is the pOH of this solution?

Principles of Chemistry II

What is the [OH⁻]?

Principles of Chemistry II