Today

Quick solubility question

Polyprotic Acids

determining something about an unknown by reacting it with a known solution

Silver Nitrate (AgNO₃) and Potassium Chloride (KCl) are both soluble salts. What will happen if I mix 100 mL of I M AgNO₃ solution with 200 ml of I M KCl solution given that K_{sp} for AgCl is 1.8 x 10⁻¹⁰

- A. I'll have a solution with Ag^+ , Cl^- , K^+ , and NO_3^- ions
- B. some solid AgCl will form
- C. both A & B

Precipitation

Like neutralization problems

First react, the solve the equilibrium

 K_{sp} is generally small. First assume as much solid as possible forms Then look at what "re-dissolves" into solution

Polyprotic Acids

Acids that have more than one proton to lose

Now we need to keep track of all the "forms" of the acid

Monoprotic HA, A

Diprotic H_2A , HA^- , A^{2-}

Triprotic H_3A , H_2A^- , HA^{2-} , A^{3-}

For example

Sulfuric Acid

$$H_2SO_4(aq) \longleftrightarrow H^+(aq) + HSO_4^-(aq)$$

$$HSO_4^-(aq) \longleftrightarrow H^+(aq) + SO_4^{2-}(aq)$$
 HA^-

$$K_{a1} = \frac{[H^+][HSO_4^-]}{[H_2SO_4]} = 10^3$$

Equilibrium for the first proton coming "off"

$$K_{a2} = \frac{[H^+][SO_4^{2-}]}{[HSO_4^-]} = 1.2 \times 10^{-2}$$

Equilibrium for the next proton coming "off"

Key Question What is in solution!

$$H_2A(aq) \longleftrightarrow H^+(aq) + HA^-(aq) K_{a1} = \frac{[H^+][HA^-]}{[H_2A]}$$

$$HA^{-}(aq) \longleftrightarrow H^{+}(aq) + A^{2-}(aq) K_{a2} = \frac{[H^{+}][A^{2-}]}{[HA^{-}]}$$

we'll reduce all such problems to 1 or 2 major forms of the acid.

First figure out which ones will be in solution

Citric Acid

$$K_{a1} = 7.4 \times 10^{-4}$$

$$K_{a2} = 1.7 \times 10^{-5}$$

$$K_{a3} = 4.0 \times 10^{-7}$$

What is the pH of IM Citric Acid? Imagine that it was monoprotic

Citric Acid

$$K_{a1} = 7.4 \times 10^{-4}$$

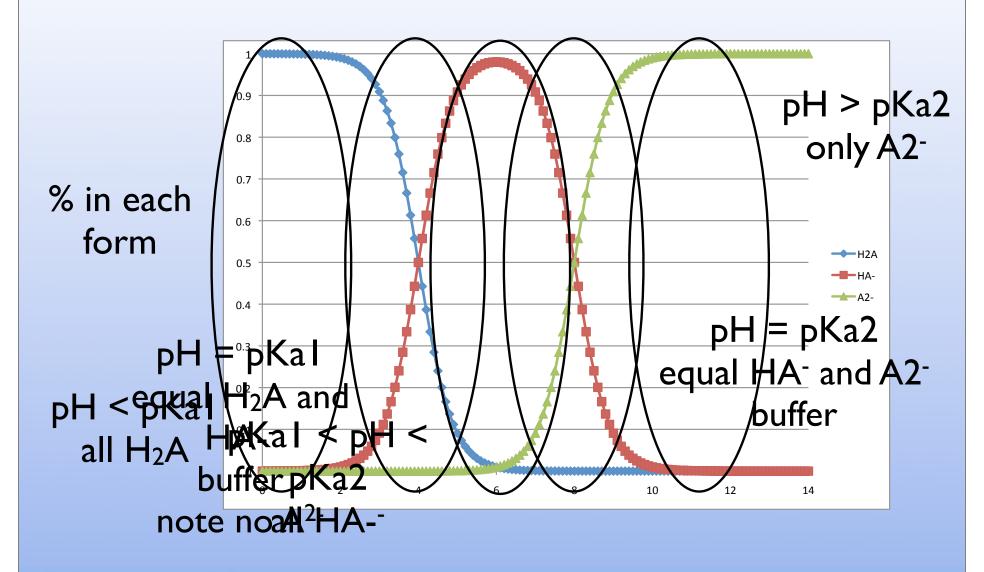
$$K_{a2} = 1.7 \times 10^{-5}$$

$$K_{a1} = 7.4 \times 10^{-4}$$
 $K_{a2} = 1.7 \times 10^{-5}$ $K_{a3} = 4.0 \times 10^{-7}$

Imagine that it was monoprotic

$$[H^+] = x = \sqrt{K_a C_a} = \sqrt{(7.4 \times 10^{-4})(1)} = 0.027$$

Lets look at K_{a2}


$$K_{a2} = [H^{+}] \frac{[HA^{2-}]}{[H_{2}A^{-}]}$$

$$K_{a2} = [H^{+}] \frac{[HA^{2-}]}{[H_{2}A^{-}]} = \frac{[HA^{2-}]}{[H_{2}A^{-}]} = \frac{K_{a2}}{[H^{+}]} = \frac{1.7 \times 10^{-5}}{0.027} = 6.3 \times 10^{-4}$$

This is a very small number

very very little HA²⁻ the second proton doesn't come off pH is dominated by the first proton equilibrium

Principles of Chemistry II

© Vanden Bout

When do I care about the other protons?

When I neutralize the acid.

As you neutralize the first protons, the second will come off,

• • • •

If I add 0.1 moles of NaOH to 0.05 moles of H₃PO₄ what will be the dominant species in solution?

If I add 0.1 moles of NaOH to 0.05 moles of H₃PO₄ what will be the dominant species in solution?

A. H_3PO_4 and H_2PO_4

B. $H_2PO_4^-$

C. H_2PO_4 and HPO_4 ²

D. HPO_4^{2-}

E. HPO_4^{2-} and PO_4^{3--}

.05 moles OH would neutralize all the H₃PO₄ making 0.5 moles of H₂PO₄-

.05 moles would neutralize all the H₂PO₄making 0.5 moles of HPO₄²OH- no all neutralized

what is left? 0.5 moles of HPO₄-

What is the pH of a solution with 0.5 M HPO $_4^{2-}$?

$$H_3PO_4$$
 $K_{a1} = 7.1 \times 10^{-3}$
 $K_{a2} = 6.3 \times 10^{-8}$
 $K_{a3} = 4.5 \times 10^{-13}$

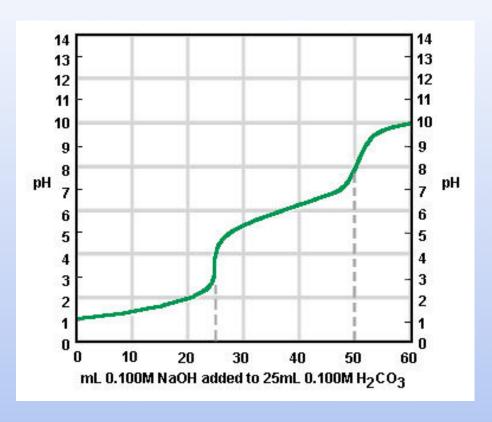
to simplify we'll use the generic notation HPO_4^{2-} is HA^{2-}

HA²⁻ is found in equilibria 2 & 3

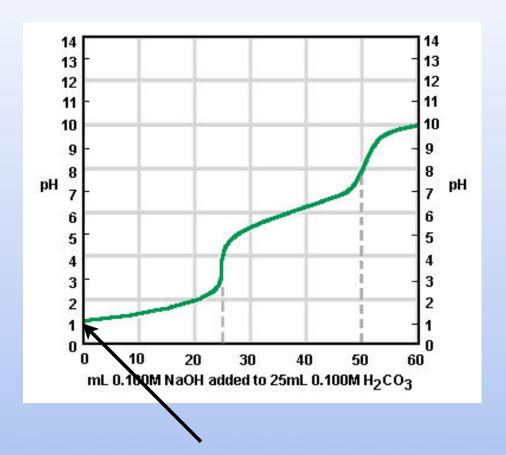
$$K_{a2} = \frac{[H^+][HA^{2-}]}{[H_2A^-]}$$
 $K_{a3} = \frac{[H^+][A^{3-}]}{[HA^{2-}]}$

Species that are both acids and bases are "Amphiprotic"

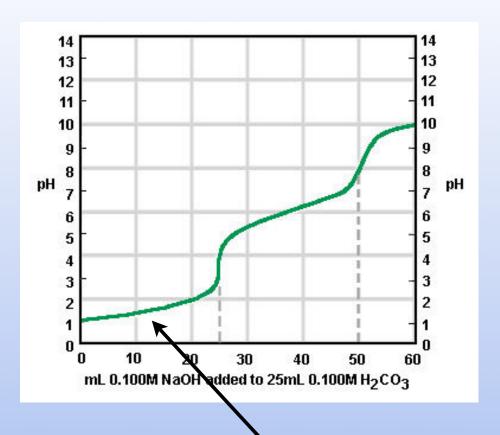
What is the pH of a solution with 0.5 M HPO_4^{2-} ?


$$H_3PO_4$$
 $K_{a1} = 7.1 \times 10^{-3}$ $K_{a2} = 6.3 \times 10^{-8}$ $K_{a3} = 4.5 \times 10^{-13}$

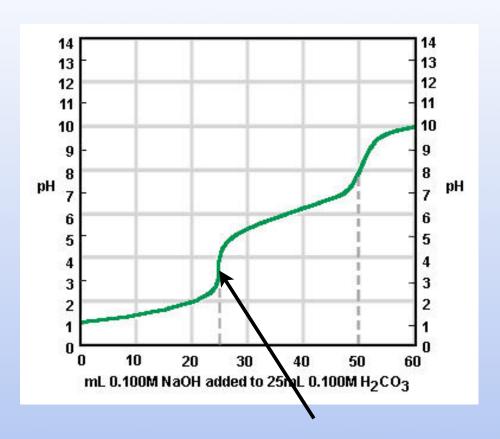
$$K_{a2} = \frac{[H^+][HA^{2-}]}{[H_2A^-]}$$
 $K_{a3} = \frac{[H^+][A^{3-}]}{[HA^{2-}]}$


$$[HA^{2-}] = \frac{[H^+][A^{3-}]}{K_{a3}} \qquad K_{a2} = \frac{[H^+][H^+][A^{3-}]}{[H_2A^-] K_{a3}}$$

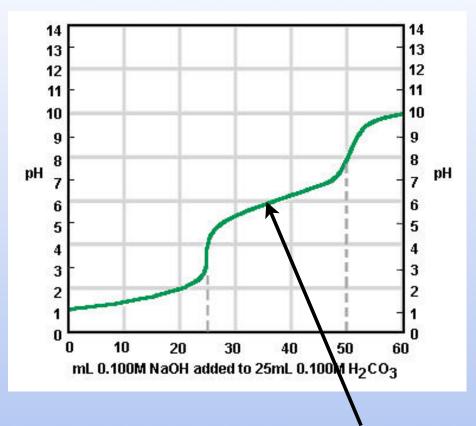
$$[H^+] = \sqrt{K_{a2} \times K_{a3}}$$


assume the small change in forming both acid and base

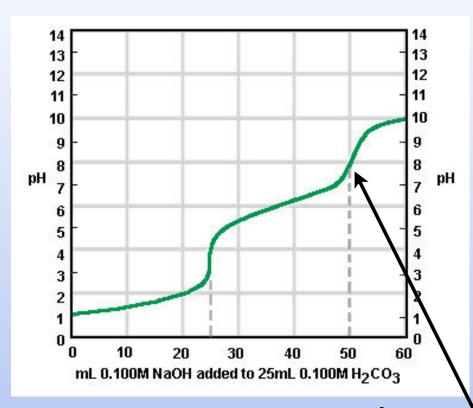
Two equivalence points
Diprotic H₂A



all H₂A weak acid

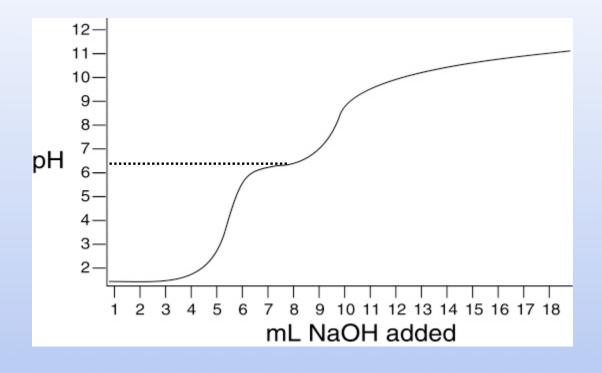


OH⁻ neutralizes some H₂A to HA⁻ buffer around K₂I


halfway to equivalence point I $pH = pK_{a1}$

equivalence point I moles $OH^- = moles H_2A$ All H_2A converted to HA^-

halfway to equivalence point I $pH = pK_{a2}$ OH⁻ neutralizes HA⁻ to A²⁻
HA⁻ and A²⁻
buffer around K_{a2}



equivalence point 2 moles $OH^- = 2 \times moles H_2A$ now all H_2A is converted to A^{2-} now weak base A^{2-}

If I add 0.1 moles of NaOH to 0.07 moles of H₃PO₄ what will be the dominant species in solution?

- A. H_3PO_4 and H_2PO_4
- B. $H_2PO_4^-$
- C. $H_2PO_4^-$ and HPO_4^{2-} .04 moles $H_2PO_4^-$.03 moles HPO_4^{2-}
- D. HPO_4^{2-}
- E. HPO_4^{2-} and PO_4^{3--}

Given the following curve estimate K_{a2} for this unknown acid

at I/2 equiv pH = pKa pH = 6.3 pKa = 6.3 Ka = 5 x 10⁻⁷

A. I

- B. 6.3
- C. 5×10^{-6}

D. 5×10^{-7}