Today

Galvanic Cells Spontaneous Electrochemistry

Principles of Chemistry II

Electrons have a lower free energy in Zn^{2+} (and Cu) than Cu^{2+} (and Zn)

Zn Cu²⁺

Zn²⁺ Cu

Principles of Chemistry II

Which has the lower Standard Gibb's free energy?

Principles of Chemistry II

A moment to think again about Free Energy and Standard Free Energy

ΔG

Difference in Free Energy between reactants and product under the current conditions (depends on the **concentrations** of the reactants and products) The concentration will change until $\Delta G = 0$

ΔG°

Difference in Free Energy between reactants and product under standard conditions standard conditions are **I M for all aqueous species** or I atm pressure for all gases

Last time, we look at this idea Use a wire to connect the two sides and have e- flow in an external circuit

Problem, one side is getting more positive one side is getting more negative. We need to keep each side neutral

Principles of Chemistry II

Add a connection that let's a "counter" ion move between the two sides

As the reaction proceeds Zn is oxidized into Zn²⁺ Cu²⁺ is reduced into Cu note I have two solid pieces of metal (electrodes) connected to the wire

Principles of Chemistry II

Principles of Chemistry II

Principles of Chemistry II

Salt Bridge or Porous Disk allow ions to flow back and forth between the two beakers. As e⁻ move from one side to the other, counter anions move the opposite direction

© Vanden Bout

How will I ever remember?

AN OX and RED CAT

ANode REDuction OXidation CAThode

Cathode Ray Tube Shoots out electrons

Alternatively just remember it!

In our reaction of Zn goes to Zn²⁺ and Cu²⁺ goes to Cu What is the cathode?

Principles of Chemistry II

To write this out we develop a short hand

symbol for the short hand

|| = "salt bridge" this divides the cell into to halves
| = show the different compounds of each 1/2 reaction

By convention the anode is always on the "left"

So for the cell we just had

Principles of Chemistry II

We can write this as

```
< Zn |Zn^{2+}||Cu^{2+}|Cu>
```


if we knew the concentrations of the ions

<Zn|Zn²⁺(I M) ||Cu²⁺(I M) |Cu>

Principles of Chemistry II

Other reactions

One half is Oxidation (Anode) Ag goes to Ag+

Reduction (Cathode) Fe³⁺ goes to Fe²⁺

< Ag | Ag⁺ || Fe³⁺ | Fe²⁺ >

but we would like this to represent the actual cell I cannot hook a wire up to Fe²⁺. I need an electrode in the solution. Let's say I use a Pt electrode

 $< Ag | Ag^{+} || Fe^{3+} | Fe^{2+} | Pt >$

Two "kinds" of electrochemical cells

Galvanic (Voltaic) Reaction is spontaneous we can use these to make a battery

Electrolytic Reaction is not spontaneous we have to input work to get these reactions to proceed

Principles of Chemistry II

 $K_w = K_a K_b = 10^{-14} (25^{\circ}C)$ $[OH^{-}] = (K_b C_B)^{0.5}$ $[H^+] = (K_a C_{HA})^{0.5}$ $[H^+] = (K_{a1}K_{a2})^{0.5}$ $[OH^{-}] = (K_{b1}K_{b2})^{0.5}$ $[H^+] = C_A$ $[OH^{-}] = C_{B}$ $[H^+] = K_A(C_a/C_b)$ $[OH^{-}] = K_B(C_b/C_a)$ $[H^+]^2 - [H^+]C_a - K_w = 0$ $[OH^{-}]^{2} - [OH^{-}]C_{b} - K_{w} = 0$

Formulas for the quiz