

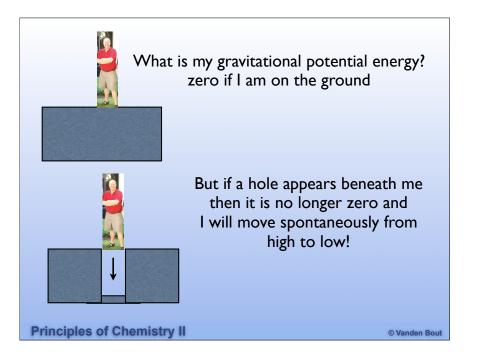
$$\begin{split} Mn^{2+} + I_2 &\longrightarrow MnO_4^- + I^- \\ I_2 &\longrightarrow 2I^- \\ I_2 &+ 2e^- &\longrightarrow 2I^- \\ This is the reduction (Cathode) \end{split}$$

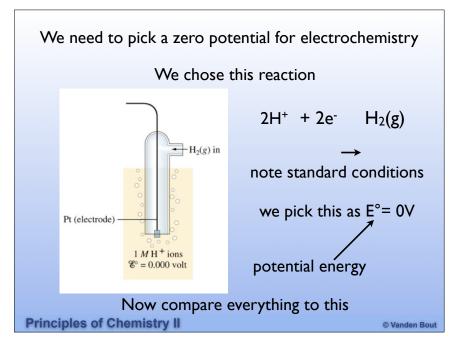
$$\begin{split} Mn^{2+} &+ I_2 &\longrightarrow MnO_4^- &+ I^- \\ Mn^{2+} &\longrightarrow MnO_4^- & everything but O \& H \\ 4H_2O &+ Mn^{2+} &\longrightarrow MnO_4^- & balance O w/H_2O \\ 4H_2O &+ Mn^{2+} &\longrightarrow MnO_4^- &+ 8H^+ & balance H w/H^+ \\ 4H_2O &+ Mn^{2+} &\longrightarrow MnO_4^- &+ 8H^+ & 5e^- & charge w/e^- \\ This is the oxidation (Anode) \\ \end{split}$$

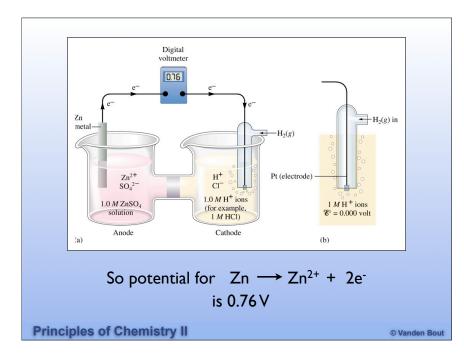
$$Principles of Chemistry II \qquad eventset Matching the set the set$$

© Vanden Bout

Principles of Chemistry II

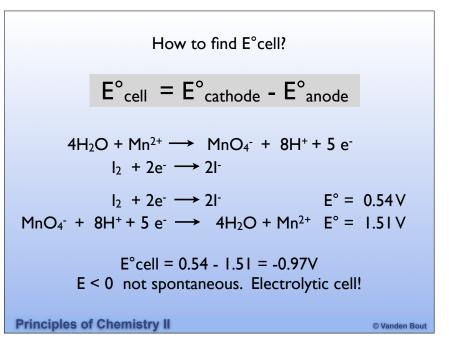

$$4H_2O + Mn^{2+} \longrightarrow MnO_4^- + 8H^+ + 5 e^-$$


$$I_2 + 2e^- \longrightarrow 2I^-$$
How can we compare these two?
We'll compare every reaction to a standard


.

~

Principles of Chemistry II



LE TIT Standard Reduction Fotentials at 25 C (298 K) for N	lany Common Half-reactions	
Half-reaction	€° (V)	Half-reaction	€° (V)
$2 + 2e^- \rightarrow 2F^-$	2.87	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	0.40
$g^{2+} + e^- \rightarrow Ag^+$	1.99	$Cu^{2+} + 2e^- \rightarrow Cu$	0.34
$o^{3+} + e^- \rightarrow Co^{2+}$	1.82	$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	0.27
$I_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	1.78	$AgCl + e^- \rightarrow Ag + Cl^-$	0.22
$e^{4+} + e^- \rightarrow Ce^{3+}$	1.70	$SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2O$	0.20
$bO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$	1.69	$Cu^{2+} + e^- \rightarrow Cu^+$	0.16
$\ln O_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$	1.68	$2H^+ + 2e^- \rightarrow H_2$	0.00
$D_4^- + 2H^+ + 2e^- \rightarrow IO_3^- + H_2O$	1.60	$Fe^{3+} + 3e^- \rightarrow Fe$	-0.036
$\ln O_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	1.51	$Pb^{2+} + 2e^- \rightarrow Pb$	-0.13
$u^{3+} + 3e^- \rightarrow Au$	1.50	$\mathrm{Sn}^{2+} + 2\mathrm{e}^- \rightarrow \mathrm{Sn}$	-0.14
$bO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$	1.46	$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23
$l_2 + 2e^- \rightarrow 2Cl^-$	1.36	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.35
$r_2O_7^{2^-} + 14H^+ + 6e^- \rightarrow 2Cr^{3^+} + 7H_2O$	1.33	$Cd^{2+} + 2e^- \rightarrow Cd$	-0.40
$h_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	1.23	$Fe^{2+} + 2e^- \rightarrow Fe$	-0.44
$\ln O_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	1.21	$\operatorname{Cr}^{3+}_{2+} + e^- \rightarrow \operatorname{Cr}^{2+}_{2+}$	-0.50
$D_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}I_2 + 3H_2O$	1.20	$Cr^{3+} + 3e^- \rightarrow Cr$	-0.73
$r_2 + 2e^- \rightarrow 2Br^-$	1.09	$Zn^{2+} + 2e^- \rightarrow Zn$	-0.76
$O_2^+ + 2H^+ + e^- \rightarrow VO^{2+} + H_2O$	1.00	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83
$uCl_4^- + 3e^- \rightarrow Au + 4Cl^-$	0.99	$Mn^{2+} + 2e^- \rightarrow Mn$	-1.18
$O_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	0.96	$Al^{3+} + 3e^- \rightarrow Al$	-1.66
$IO_2 + e^- \rightarrow CIO_2^-$	0.954	$H_2 + 2e^- \rightarrow 2H^-$	-2.23
$Hg^{2+} + 2e^- \rightarrow Hg_2^{2+}$	0.91	$Mg_{2+}^{2+} + 2e^- \rightarrow Mg$	-2.37
$g^+ + e^- \rightarrow Ag$ $g_2^{2+} + 2e^- \rightarrow 2Hg$	0.80	$La^{3+} + 3e^- \rightarrow La$ $Na^+ + e^- \rightarrow Na$	-2.37
$g_2^- + 2e \rightarrow 2Hg$ $e^{3^+} + e^- \rightarrow Fe^{2^+}$	0.80	$Na^{+} + e^{-} \rightarrow Na$ $Ca^{2+} + 2e^{-} \rightarrow Ca$	-2.71 -2.76
$e^{-} + e^{-} \rightarrow Fe^{-}$ $h_2 + 2H^+ + 2e^- \rightarrow H_2O_2$	0.77	$Ca^- + 2e^- \rightarrow Ca$ $Ba^{2+} + 2e^- \rightarrow Ba$	-2.76
$_2 + 2\Pi + 2e \rightarrow \Pi_2O_2$ $\ln O_4^- + e^- \rightarrow MnO_4^{2-}$	0.68	$Ba^- + 2c \rightarrow Ba$ $K^+ + e^- \rightarrow K$	-2.90
$HO_4 + e \rightarrow MIO_4^-$ + $2e^- \rightarrow 2I^-$	0.56	$K + e \rightarrow K$ $Li^+ + e^- \rightarrow Li$	-2.92
$+ 2c \rightarrow 21$ $a^+ + e^- \rightarrow Cu$	0.54	$Li + c \rightarrow Li$	-5.05

Standard Potential (V)	Reduction Half-Reaction	Easy to reduce
+2.87	$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$	(Strongest
+1.51	$MnO_4^{-}(sq) + 8H^+(sq) + 5e^- \longrightarrow Mn^{2+}(sq) + 4H_2O(1)$	
+1.36	$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(ag)$	oxidizing
+1.33	$Cr_2O_7^{2-}(sq) + 14H^+(sq) + 6e^- \longrightarrow 2Cr^{3+}(sq) + 7H_2O(1)$	
+1.23	$O_2(g) + 4H^+(sq) + 4e^- \longrightarrow 2H_2O(J)$	agents)
+1.06	$Br_2(1) + 2e^- \longrightarrow 2Br^-(sq)$	c ,
+0.96	$NO_3^-(sq) + 4H^+(sq) + 3e^- \longrightarrow NO(g) + H_2O(I)$	
+0.80	$Ag^+(sq) + e^- \longrightarrow Ag(s)$	
+0.77	$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	
+0.68	$O_2(g) + 2H^+(aq) + 2e^- \longrightarrow H_2O_2(aq)$	
+0.59	$MnO_4^{-}(sq) + 2H_2O(I) + 3e^- \longrightarrow MnO_2(s) + 4OH^-(sq)$	
+0.54	$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$	
+0.40	$O_2(g) + 2H_2O(1) + 4e^- \longrightarrow 4OH^-(sq)$	
+0.34	$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	
0	$2H^+(aq) + 2e^- \longrightarrow H_2(g)$	
-0.28	$Ni^{2+}(sq) + 2e^{-} \longrightarrow Ni(s)$	
-0.44		Easy to oxidize
-0.76	$\operatorname{Zr}^{2+}(sq) + 2e^{-} \longrightarrow \operatorname{Zn}(s)$	(strongest
-0.83	$2H_2O(I) + 2e^- \longrightarrow H_2(g) + 2OH^-(aq)$	· •
-1.66	$Al^{3+}(sq) + 3e^{-} \longrightarrow Al(s)$	reducing
-2.71	$Na^+(sq) + e^- \longrightarrow Na(s)$	
-3.05	$Li^+(aq) + e^- \longrightarrow Li(s)$	agents)

