# Today Kinetics

How fast are reactions? What are the rates?

What affects the rate of reactions?

Nature of the reactants
 Concentration of the reactants

 Temperature
 Presence of a Catalyst

### Thermodynamics vs. Kinetics





Diamond

Graphite

 $\Delta_{\rm R}G^{\circ} = -3 \text{ kJ mol}^{-1}$ 

Graphite is lower in free energy than Diamond Reaction of Diamond to Graphite is spontaneous

THE REACTION IS JUST VERY VERY SLOW

**Principles of Chemistry II** 

#### Thermodynamics

Compares Free energy of reactants and products This is the ideal case assuming everything can find its lowest energy state (time is irrelevant)

Diamonds are unstable

#### **Kinetics**

What is actually happening How long does it take convert reactants to products

# Diamonds are "kinetically trapped" in the unstable state

**Principles of Chemistry II** 



**Principles of Chemistry II** 

Why is there a "barrier"?

You have to break the "old" bonds before you can form the "new" ones

How do you speed up a reaction?

Raise the temperature (more molecules over the barrier) Add a catalyst (lower the barrier)

How do we know how fast a reaction is?

We look at the rate

Rate is change per time Reaction rate is change in concentration per time

![](_page_6_Figure_3.jpeg)

**Principles of Chemistry II** 

# For this reaction

- A. the rate for all the species is constant
- B. the rate if largest at the start of the reaction
- C. the rate is largest at equilibrium
- D. the rate is randomly fluctuating

![](_page_7_Figure_5.jpeg)

Rate is change in concentration per unit time

Rate is the slope of the graph of concentration vs time

![](_page_8_Figure_2.jpeg)

**Principles of Chemistry II** 

# $CO(g) + H_2O(g) \iff CO_2(g) + H_2(g)$

![](_page_9_Figure_1.jpeg)

If you know the rate of one reactant or product you know them all

**Principles of Chemistry II** 

![](_page_10_Figure_0.jpeg)

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)$$

| Rate of     |   | 2 x the Rate of   |   | Rate of   |
|-------------|---|-------------------|---|-----------|
| consumption | = | consumption       | = | formation |
| of $H_2$    |   | of O <sub>2</sub> |   | of $H_2O$ |

 $H_2$  and  $H_2O$  has rates that are faster since 2 moles reaction for each 1 mole of  $O_2$ 

For this reactions  $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$ the rate of production of NH<sub>3</sub> is

![](_page_12_Figure_1.jpeg)

B. I.5 times the rate of consumption of  $H_2$ 

![](_page_12_Figure_3.jpeg)

 $\sim 2 \times N_2 = 2/3 \times H_2$ 

**Principles of Chemistry II** 

For this reactions  

$$N_{2}(g) + 3H_{2}(g) \longrightarrow 2NH_{3}(g)$$
Rate =  $-\frac{1}{1} \frac{d[N_{2}]}{dt} = -\frac{1}{3} \frac{d[H_{2}]}{dt} = +\frac{1}{2} \frac{d[NH_{3}]}{dt}$ 
Generic Reaction  
 $aA + bB \longrightarrow cC + dD$   
Rate =  $-\frac{1}{a} \frac{d[A]}{dt} = -\frac{1}{b} \frac{d[B]}{dt} = +\frac{1}{c} \frac{d[C]}{dt} = +\frac{1}{d} \frac{d[D]}{dt}$ 

**Principles of Chemistry II** 

![](_page_14_Figure_0.jpeg)

| <b>TABLE 15.1</b>          | Concentrations of Reactant and Products |
|----------------------------|-----------------------------------------|
| as a Function              | of Time for the Reaction                |
| $2NO_2(q) \longrightarrow$ | $2NO(q) + O_2(q)$ (at 300°C)            |

|                   | Concentration (mol/L) |        |                |  |  |
|-------------------|-----------------------|--------|----------------|--|--|
| Time ( $\pm 1$ s) | $NO_2$                | NO     | O <sub>2</sub> |  |  |
| 0                 | 0.0100                | 0      | 0              |  |  |
| 50                | 0.0079                | 0.0021 | 0.0011         |  |  |
| 100               | 0.0065                | 0.0035 | 0.0018         |  |  |
| 150               | 0.0055                | 0.0045 | 0.0023         |  |  |
| 200               | 0.0048                | 0.0052 | 0.0026         |  |  |
| 250               | 0.0043                | 0.0057 | 0.0029         |  |  |
| 300               | 0.0038                | 0.0062 | 0.0031         |  |  |
| 350               | 0.0034                | 0.0066 | 0.0033         |  |  |
| 400               | 0.0031                | 0.0069 | 0.0035         |  |  |
|                   |                       |        |                |  |  |

#### **Principles of Chemistry II**

# Rate Laws

How does the rate depend on the concentrations?

# Rate is some function of the concentration of the reactant molecules

What is the function?

![](_page_17_Figure_0.jpeg)