Today Kinetics Rate Laws

Finding the order of a reaction

Integrated Rate Laws What is the concentration as a function of time?

we are looking only at the rate of the "forward" reaction This depends only on the concentration of the reactants

I. Concentration of reactants

This is the "rate" law. It is found by looking at the data It depends on the "mechanism"

 $2NO_2 \rightarrow 2NO + O_2$

for example rate = $k[NO_2]^2$ this reaction is 2nd order in NO₂

2. Temperature

This changes the rate constant k

Arrhenius Law

The higher the temperature the more molecules that have enough energy to make it over the barrier

Principles of Chemistry II

3. Catalyst

This changes the rate constant k. Reduces E_a

Arrhenius Law

As the barrier is lower, the rate constant is larger

Principles of Chemistry II

4. Physical state (solid chunk, dust, gas,)

Arrhenius Law

Prefactor A is the rate constant when T = infinity

Principles of Chemistry II

Finding the rate law from initial rates

TABLE 15.4 Initial Rates from Three Experiments for the Reaction $NH_4^+(aq) + NO_2^-(aq) \longrightarrow N_2(g) + 2H_2O(l)$

Concentration of NH4 ⁺	Concentration of NO ₂ ⁻	Initial Rate (mol $L^{-1} s^{-1}$)
0.100 M	0.0050 M	1.35×10^{-7}
0.100 M 0.200 M	0.010 M 0.010 M	$\frac{2.70 \times 10^{-7}}{5.40 \times 10^{-7}}$
	of NH ₄ ⁺ 0.100 <i>M</i> 0.100 <i>M</i>	of NH_4^+ of NO_2^- 0.100 M0.0050 M0.100 M0.010 M

determine NO_2^- dependence from first two data points determine NH_4^+ dependence from second two data points

a straight line with a slope of -k

Principles of Chemistry II

Half life				
TABLE 15.3 Concentration/Time Data for the Reaction $2N_2O_5(soln)$ $\longrightarrow 4NO_2(soln) + O_2(g)$ (at 45°C)				
$[N_2O_5]$ (mol/L)	Time (s)			
$ \begin{array}{c} 1.00\\ 0.88\\ 0.78\\ 0.69\\ 0.61\\ 0.54\\ 0.48\\ 0.43\\ 0.38\\ 0.34\\ 0.20\\ \end{array} $	$\begin{array}{c} 0 \\ 200 \\ 400 \\ 600 \\ 800 \\ 1000 \\ 1200 \\ 1400 \\ 1600 \\ 1800 \\ 2000 \end{array}$			

The half-life is the time at which half the initial concentration remains.

what is the half-life for the reaction at the right?

Principles of Chemistry II

Principles of Chemistry II

Principles of Chemistry II

Integrated Rate Law

Second Order

$I/[A] = kt + I/[A]_{\circ}$

So if you plot I/[A] vs time you get a straight line with a slope of k

Principles of Chemistry II

Principles of Chemistry II

		Order		
	Zero	First	Second	
Rate law	Rate $= k$	Rate = k [A]	Rate = $k[A]^2$	
Integrated rate law	$[\mathbf{A}] = -kt + [\mathbf{A}]_0$	$\ln[\mathbf{A}] = -kt + \ln[\mathbf{A}]_0$	$\frac{1}{[\mathbf{A}]} = kt + \frac{1}{[\mathbf{A}]_0}$	
Plot needed to give a straight line	[A] versus t	ln[A] versus t	$\frac{1}{[A]}$ versus t	
Relationship of rate constant to the slope of straight line	Slope = $-k$	Slope = $-k$	Slope = k	
Half-life	$t_{1/2} = \frac{[\mathbf{A}]_0}{2k}$	$t_{1/2} = \frac{0.693}{k}$	$t_{1/2} = \frac{1}{k[A]_0}$	

TABLE 15.6 Summary of the Kinetics for Reactions of the Type $aA \longrightarrow$ Products That Are Zero, First, or Second Order in [A]

Principles of Chemistry II