


One key key catalyst point I want to re-emphasize

A catalyst is unchanged by a chemical reaction! It is the same before and after

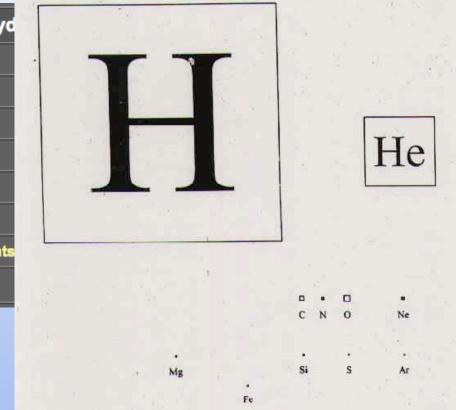


Things everyone should know Get to know the chemistry of the elements

How is each element found in nature

Reactions involving compounds with those elements

Practical uses of those compounds


**Principles of Chemistry II** 

First what is the most abundant element in the Universe?

- A. Hydrogen
- B. Helium
- C. Oxygen
- D. Silicon
- E. Iron

**Principles of Chemistry II** 

#### The Astronomer's Periodic Table (Ben McCall)



| What a    | about ir | nour  | Dart of | the | universe? |
|-----------|----------|-------|---------|-----|-----------|
| v v nat c |          | i Uui | part Or |     | universe. |

**Principles of Chemistry II** 

| Number of atoms per 10,000,000 of hyd |            |                    |  |  |
|---------------------------------------|------------|--------------------|--|--|
| hydrogen                              | 10,000,000 | sulfur             |  |  |
| helium                                | 1,400,000  | iron               |  |  |
| oxygen                                | 6,800      | argon              |  |  |
| carbon                                | 3,000      | aluminum           |  |  |
| neon                                  | 2,800      | sodium             |  |  |
| nitrogen                              | 910        | calcium            |  |  |
| magnesium                             | 290        | all other elements |  |  |
| silicon                               | 250        |                    |  |  |

# First what is the most abundant element on the Earth's crust?

- A. Hydrogen
- B. Helium
- C. Oxygen
- D. Silicon
- E. Iron

**Principles of Chemistry II** 

| Element   | Mass Percent | Element    | Mass Percent |
|-----------|--------------|------------|--------------|
| Oxygen    | 49.2         | Titanium   | 0.58         |
| Silicon   | 25.7         | Chlorine   | 0.19         |
| Aluminum  | 7.50         | Phosphorus | 0.11         |
| Iron      | 4.71         | Manganese  | 0.09         |
| Calcium   | 3.39         | Carbon     | 0.08         |
| Sodium    | 2.63         | Sulfur     | 0.06         |
| Potassium | 2.40         | Barium     | 0.04         |
| Magnesium | 1.93         | Nitrogen   | 0.03         |
| Hydrogen  | 0.87         | Fluorine   | 0.03         |
|           |              | All others | 0.49         |

**TABLE 18.1**Distribution (Mass Percent) of the 18 Most AbundantElements in the Earth's Crust, Oceans, and Atmosphere

#### **Principles of Chemistry II**

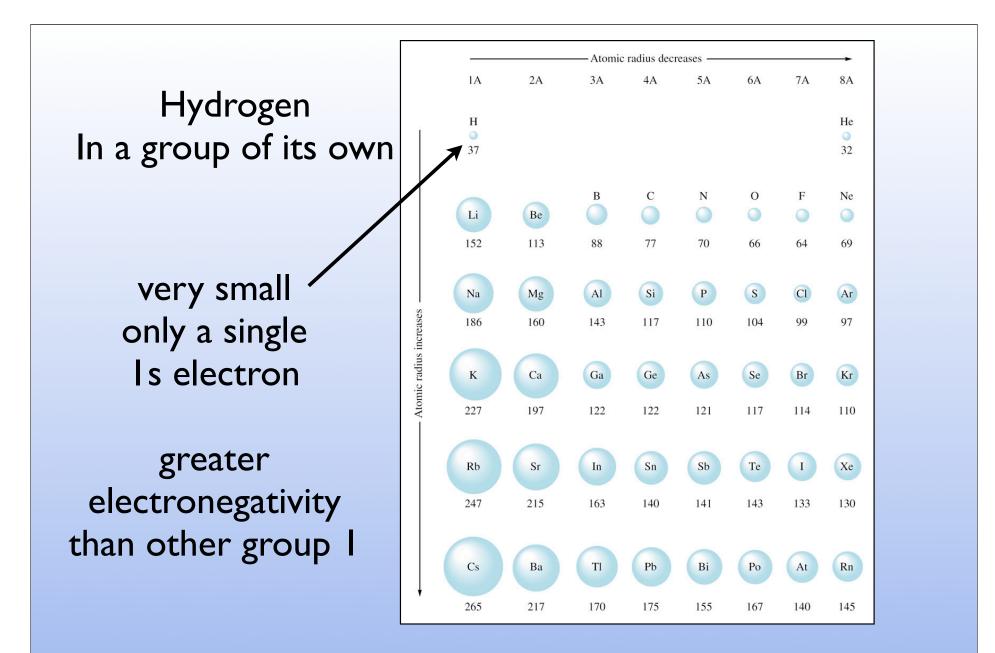
### Monahans Sand Dune's State Park



Sand is SiO<sub>2</sub>

**Principles of Chemistry II** 

Elemental Makeup of you?


- A. Hydrogen
- B. Helium
- C. Oxygen
- D. Silicon
- E. Iron

**Principles of Chemistry II** 

| TABLE 18.2 Abundance of Elements in the Human Body |              |                                           |  |  |
|----------------------------------------------------|--------------|-------------------------------------------|--|--|
| Major Elements                                     | Mass Percent | Trace Elements<br>(in alphabetical order) |  |  |
| Oxygen                                             | 65.0         | Arsenic                                   |  |  |
| Carbon                                             | 18.0         | Chromium                                  |  |  |
| Hydrogen                                           | 10.0         | Cobalt                                    |  |  |
| Nitrogen                                           | 3.0          | Copper                                    |  |  |
| Calcium                                            | 1.4          | Fluorine                                  |  |  |
| Phosphorus                                         | 1.0          | Iodine                                    |  |  |
| Magnesium                                          | 0.50         | Manganese                                 |  |  |
| Potassium                                          | 0.34         | Molybdenum                                |  |  |
| Sulfur                                             | 0.26         | Nickel                                    |  |  |
| Sodium                                             | 0.14         | Selenium                                  |  |  |
| Chlorine                                           | 0.14         | Silicon                                   |  |  |
| Iron                                               | 0.004        | Vanadium                                  |  |  |
| Zinc                                               | 0.003        |                                           |  |  |
|                                                    |              |                                           |  |  |

Note by atoms, Hydrogen is the most abundant

**Principles of Chemistry II** 



# Hydrogen

electronegativity of 2.1 (nearly exactly the same as carbon)

might lose an electron (+1 oxidation state) might gain an electron (-1 oxidation state)

 $2K(s) + H_2(g) \longrightarrow 2KH(s)$ 

 $2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)$ 

**Principles of Chemistry II** 

| Reactant                         | Reaction with hydrogen                                        |  |
|----------------------------------|---------------------------------------------------------------|--|
| Group 1 metals (M)               | $2 M(s) + H_2(g) \longrightarrow 2 MH(s)$                     |  |
| Group 2 metals (M, not Be or Mg) | $M(s) + H_2(g) \longrightarrow MH_2(s)$                       |  |
| some <i>d</i> -block metals (M)  | $2 M(s) + \tilde{x} H_2(g) \longrightarrow \tilde{2} MH_x(s)$ |  |
| oxygen                           | $O_2(g) + 2 H_2(g) \longrightarrow 2 H_2O(\hat{l})$           |  |
| nitrogen                         | $N_2(g) + 3 H_2(g) \longrightarrow 2 NH_3(g)$                 |  |
| halogen (X <sub>2</sub> )        | $X_2(g,l,s) + H_2(g) \longrightarrow 2 HX(g)$                 |  |

#### **Principles of Chemistry II**

Who cares about hydgrogen

### $2H_2 + O_2 \longrightarrow 2H_2O$

# reaction = 2x(enthalpy of formation of water) -475 kJ mol<sup>-1</sup>

# Most energy per mass of any reaction



#### **Principles of Chemistry II**

In the photograph above the first bus is unloaded from the ship, with the pure steam rising from its exhaust pipe visible at the rear.

The problem is there is no H<sub>2</sub> Where to get it?

Steam reforming of methane (1000°C, Ni Catalyst)  $CH_4(g) + H_2O(g) \longrightarrow CO(g) + 3H_2(g)$ 

> Water gas shift  $(I30^{\circ}C)$ CO(g) + H<sub>2</sub>O(g)  $\longrightarrow$  CO<sub>2</sub>(g) + H<sub>2</sub>(g)

**Principles of Chemistry II** 

Other fun with  $H_2$ 

# H<sup>+</sup> can oxidize metals

## $Zn + 2H^+ \longrightarrow Zn^{2+} + H_2$

**Principles of Chemistry II** 

Other fun with H<sub>2</sub>  $H_2$  can reduce oxides  $CuO + H_2 \rightarrow Cu + H_2O$ 

**Principles of Chemistry II** 

| TABLE 20.1 Stand          | dard Reduction Potentials in Water at 25℃                                     |
|---------------------------|-------------------------------------------------------------------------------|
| Standard<br>Potential (V) | Reduction Half-Reaction                                                       |
| +2.87                     | $F_2(\mathcal{S}) + 2e^- \longrightarrow 2F^-(\mathfrak{s}q)$                 |
| +1.51                     | $MnO_4^{-}(sq) + 8H^{+}(sq) + 5e^{-} \longrightarrow Mn^{2+}(sq) + 4H_2O(7)$  |
| +1.36                     | $Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$                                    |
| +1.33                     | $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \longrightarrow 2Cr^{3+}(aq) + 7H_2O(I)$ |
| +1.23                     | $O_2(\mathcal{S}) + 4H^+(\mathfrak{A}_2) + 4e^- \longrightarrow 2H_2O(I)$     |
| +1.06                     | $Br_2(I) + 2e^- \longrightarrow 2Br^-(sq)$                                    |
| +0.96                     | $NO_3^{-}(aq) + 4H^+(aq) + 3e^- \longrightarrow NO(g) + H_2O(I)$              |
| +0.80                     | $Ag^+(aq) + e^- \longrightarrow Ag(s)$                                        |
| +0.77                     | $Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$                             |
| +0.68                     | $O_2(g) + 2H^+(aq) + 2e^- \longrightarrow H_2O_2(aq)$                         |
| +0.59                     | $MnO_4^{-}(sq) + 2H_2O(1) + 3e^- \longrightarrow MnO_2(s) + 4OH^-(sq)$        |
| +0.54                     | $I_2(s) + 2e^- \longrightarrow 2I^-(aq)$                                      |
| +0.40                     | $O_2(g) + 2H_2O(I) + 4e^- \longrightarrow 4OH^-(aq)$                          |
| +0.34                     | $Cu^{2+}(sq) + 2e^{-} \longrightarrow Cu(s)$                                  |
| 0                         | $2H^+(sq) + 2e^- \longrightarrow H_2(g)$                                      |
| -0.28                     | $Ni^{2+}(sq) + 2e^{-} \longrightarrow Ni(s)$                                  |
| -0.44                     | $Fe^{2+}(sq) + 2e^{-} \longrightarrow Fe(s)$                                  |
| -0.76                     | $\operatorname{Zr}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Zn}(s)$    |
| -0.83                     | $2H_2O(I) + 2e^- \longrightarrow H_2(g) + 2OH^-(aq)$                          |
| -1.66                     | $Al^{3+}(sq) + 3e^{-} \longrightarrow Al(s)$                                  |
| -2.71                     | $Na^+(sq) + e^- \longrightarrow Na(s)$                                        |
| -3.05                     | $\operatorname{Li}^+(sq) + e^- \longrightarrow \operatorname{Li}(s)$          |

#### **Principles of Chemistry II**

# Hydrogen

#### How is each element found in nature

(its almost all in water and hydrocarbons) H<sub>2</sub> made from methane reforming with steam

Reactions involving compounds with those elements  $H^+$  oxidizing metals  $H_2$  reducing compounds (like oxides)

Practical uses of those compounds

$$2H_2 + O_2 \longrightarrow 2H_2O$$

# Hydrogen

#### How is each element found in nature

(its almost all in water and hydrocarbons) H<sub>2</sub> made from methane reforming with steam

Reactions involving compounds with those elements  $H^+$  oxidizing metals  $H_2$  reducing compounds (like oxides)

Practical uses of those compounds

$$2H_2 + O_2 \longrightarrow 2H_2O$$

Group I metals Alkali Metals

All have a nS<sup>1</sup> electronic configuration Very low ionization energy Behave like a metal (easily oxidized) From +1 ion always low boiling and melting points react violently with water (and most anything else) from basic hydride and oxides

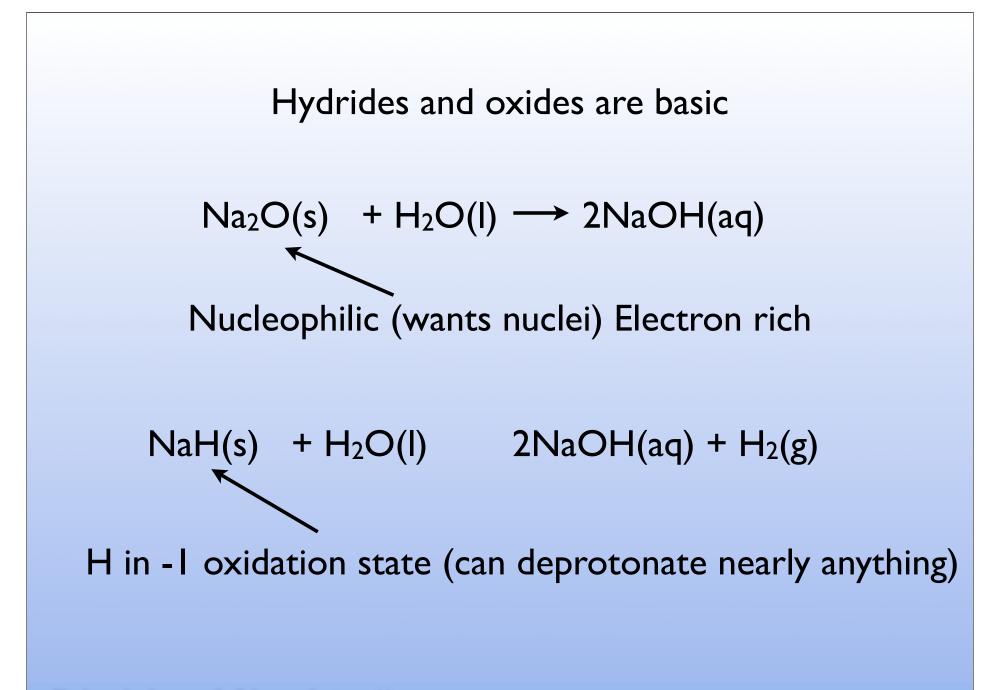
### $2Na + 2H_2O \rightarrow 2Na^+ + 2OH^- + H_2(g)$

**Principles of Chemistry II** 

| TABLE 20.1                | Standard Reduction Potentials in Water at 25°C                                                                                                |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Standard<br>Potential (V) | Reduction Half-Reaction                                                                                                                       |
| +2.87                     | $F_2(\mathscr{S}) + 2e^- \longrightarrow 2F^-(\mathscr{A}_q)$                                                                                 |
| +1.51                     | $MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \longrightarrow Mn^{2+}(aq) + 4H_2O(I)$                                                                  |
| +1.36                     | $Cl_2(g) + 2e^- \longrightarrow 2Cl^-(sq)$                                                                                                    |
| +1.33                     | $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \longrightarrow 2Cr^{3+}(aq) + 7H_2O(I)$                                                                 |
| +1.23                     | $O_2(\mathcal{S}) + 4H^+(\mathfrak{A}_{\mathcal{P}}) + 4e^- \longrightarrow 2H_2O(\mathcal{I})$                                               |
| +1.06                     | $Br_2(I) + 2e^- \longrightarrow 2Br^-(aq)$                                                                                                    |
| +0.96                     | $NO_3^{-}(aq) + 4H^{+}(aq) + 3e^{-} \longrightarrow NO(g) + H_2O(I)$                                                                          |
| +0.80                     | $Ag^+(sq) + e^- \longrightarrow Ag(s)$                                                                                                        |
| +0.77                     | $Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$                                                                                             |
| +0.68                     | $O_2(g) + 2H^+(aq) + 2e^- \longrightarrow H_2O_2(aq)$                                                                                         |
| +0.59                     | $MnO_4^{-}(sq) + 2H_2O(I) + 3e^{-} \longrightarrow MnO_2(s) + 4OH^{-}(sq)$                                                                    |
| +0.54                     | $I_2(s) + 2e^- \longrightarrow 2I^-(sq)$                                                                                                      |
| +0.40                     | $O_2(\mathcal{S}) + 2H_2O(I) + 4e^- \longrightarrow 4OH^-(\mathfrak{s}q)$                                                                     |
| +0.34                     | $Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$                                                                                                  |
| 0                         | $2H^+(\mathfrak{sq}) + 2e^- \longrightarrow H_2(\mathfrak{S})$                                                                                |
| -0.28                     | $Ni^{2+}(sq) + 2e^{-} \longrightarrow Ni(s)$                                                                                                  |
| -0.44                     | $Fe^{2+}(sq) + 2e^{-} \longrightarrow Fe(s)$                                                                                                  |
| -0.76                     | $\operatorname{Zrr}^{2+}(sq) + 2e^{-} \longrightarrow \operatorname{Zn}(s)$                                                                   |
| -0.83                     | $2H_2O(I) + 2e^- \longrightarrow H_2(g) + 2OH^-(aq)$                                                                                          |
| -1.66                     | $Al^{3+}(sq) + 3e^{-} \longrightarrow Al(s)$                                                                                                  |
| -2.71                     | $Na^+(sq) + e^- \longrightarrow Na(s)$<br>$\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ |
| -3.05                     | $Li^+(sq) + e^- \longrightarrow Li(s)$<br><b>Best Redu</b>                                                                                    |

#### **Principles of Chemistry II**

Group I elements will react with nearly anything


 $2Na(s) + Cl_2(g) \rightarrow NaCl(s)$   $3Li(s) + N_2(g) \rightarrow 2Li_3N(s)$   $4Na(s) + O_2(g) \rightarrow 2Na_2O(s)$ 

reactions with air

**Principles of Chemistry II** 

| TABLE 18.6 Selected Reactions of the                                                                                                                                                                                          | ne Alkali Metals                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Reaction                                                                                                                                                                                                                      | Comment                                                |
| $2M + X_2 \longrightarrow 2MX$<br>$4Li + O_2 \longrightarrow 2Li_2O$<br>$2Na + O_2 \longrightarrow Na_2O_2$                                                                                                                   | X <sub>2</sub> = any halogen molecule<br>Excess oxygen |
| $ \begin{array}{ccc} M + O_2 & \longrightarrow & MO_2 \\ 2M + S & \longrightarrow & M_2S \end{array} \end{array} $                                                                                                            | M = K, Rb, or Cs                                       |
| $\begin{array}{ccc} 6\text{Li} + \text{N}_2 & \longrightarrow & 2\text{Li}_3\text{N} \\ 12\text{M} + \text{P}_4 & \longrightarrow & 4\text{M}_3\text{P} \\ 2\text{M} + \text{H}_2 & \longrightarrow & 2\text{MH} \end{array}$ | Li only                                                |
| $2M + 2H_2O \longrightarrow 2MOH + H_2$<br>$2M + 2H^+ \longrightarrow 2M^+ + H_2$                                                                                                                                             | Violent reaction!                                      |

**Principles of Chemistry II** 



**Principles of Chemistry II** 

Where are they?

Everywhere as ions

Na<sup>+</sup>, K<sup>+</sup> are everywhere (Li<sup>+</sup> because it has such a large charge density often makes insoluble compounds) Rb, Cs, Fr very little in the universe

Na<sup>+</sup> and K<sup>+</sup> critical in biochemistry

| <b>TABLE 18.3</b> | Sources and Methods of Preparation of the Pure Alkali Metals                                                    |                                     |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|
| Element           | Source                                                                                                          | Method of Preparation               |  |  |
| Lithium           | Silicate minerals such as spodumene, LiAl(Si <sub>2</sub> O <sub>6</sub> )                                      | Electrolysis of molten LiCl         |  |  |
| Sodium            | NaCl                                                                                                            | Electrolysis of molten NaCl         |  |  |
| Potassium         | KCl                                                                                                             | Electrolysis of molten KCl          |  |  |
| Rubidium          | Impurity in lepidolite,<br>Li <sub>2</sub> (F,OH) <sub>2</sub> Al <sub>2</sub> (SiO <sub>3</sub> ) <sub>3</sub> | Reduction of RbOH with Mg and $H_2$ |  |  |
| Cesium            | Pollucite $(Cs_4Al_4Si_9O_{26} \cdot H_2O)$<br>and an impurity in<br>lepidolite (Fig. 18.4)                     | Reduction of CsOH with Mg and $H_2$ |  |  |

#### **Principles of Chemistry II**

# **Practical Uses** $Na^+$ and $K^+$ needed to keep your body functioning Not to mention tasty $Li^+ + e^- \longrightarrow Li \quad E = -3V \pmod{\text{most negative}}$ Make a great battery (high voltage)

Group II metals Alkali Earth Metals

All have a nS<sup>2</sup> electronic configuration Very low ionization energy Behave like a metal (easily oxidized) From +2 ion always react with water (and most anything else)

Difference compared to group I

+2 ions have a very high charge density Often they make insoluble compounds

You'll find them as oxides, phosphates, sulfates, and carbonates

Sometimes mixed metal compounds Be<sub>3</sub>Al<sub>2</sub>Si<sub>6</sub>O<sub>18</sub> (Beryl)

Emeralds = Beryl +  $Cr^{3+}$  ions



**Principles of Chemistry II** 

Which is easier to oxidize?

- A. Magnesium
- B. Carbon
- C. They are the same

#### **Common Reactions**

#### $Ca + 2H_2O \longrightarrow Ca^{2+} + 2OH^- + H_2$

| <b>TABLE 18.8</b>    | TABLE 18.8 Selected Reactions of the Group 2A Elements |                                                                |  |  |  |
|----------------------|--------------------------------------------------------|----------------------------------------------------------------|--|--|--|
|                      | Reaction                                               | Comment                                                        |  |  |  |
| $M + X_2 -$          | $\rightarrow MX_2$                                     | $X_2 = any halogen molecule$                                   |  |  |  |
| $2M + O_2 -$         | $\longrightarrow 2MO$                                  | Ba gives BaO <sub>2</sub> as well                              |  |  |  |
| M + S                | → MS                                                   |                                                                |  |  |  |
| $3M + N_2 -$         | $\longrightarrow M_3N_2$                               | High temperatures                                              |  |  |  |
| $6M + P_4 -$         | $\rightarrow 2M_3P_2$                                  | High temperatures                                              |  |  |  |
| M + H <sub>2</sub> — | $\rightarrow MH_2$                                     | M = Ca, Sr, or Ba; high temp-<br>eratures; Mg at high pressure |  |  |  |
| $M + 2H_2O$          | $\longrightarrow M(OH)_2 + H_2$                        | M = Ca, Sr, or Ba                                              |  |  |  |
| $M + 2H^+$ ·         | $\longrightarrow M^{2+} + H_2$                         |                                                                |  |  |  |
| $Be + 2OH^{-}$       | $+ 2H_2O \longrightarrow Be(OH)_4^{2-} + H_2$          |                                                                |  |  |  |

**Principles of Chemistry II** 

Oxides are highly reactive Very Basic

 $CaO + H_2O \longrightarrow Ca^{2+} + 2OH^{-}$ 

Key component in cement

#### $CaCO_3 + heat \longrightarrow CaO + CO_2$

**Principles of Chemistry II** 

Ca<sup>2+</sup> has a very high charge density Make strong compounds Not a surprise to find it in bones, teeth, concrete...

Oddball Be makes some covalent compounds

All other are metallic

**Principles of Chemistry II** 

# Group III

| Element  | Radius<br>of M <sup>3+</sup><br>(pm) | Ionization<br>Energy<br>(kJ/mol) | $\mathscr{C}^{\circ}(V)$ for $M^{3+} + 3e^- \longrightarrow M$ | Sources                                             | Method of<br>Preparation                                                                  |
|----------|--------------------------------------|----------------------------------|----------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------|
| Boron    | 20                                   | 798                              | —                                                              | Kernite, a form of borax $(Na_2B_4O_7 \cdot 4H_2O)$ | Reduction by Mg or $H_2$                                                                  |
| Aluminum | 50                                   | 581                              | -1.66                                                          | Bauxite (Al <sub>2</sub> O <sub>3</sub> )           | Electrolysis of Al <sub>2</sub> O <sub>3</sub> in molten Na <sub>3</sub> AlF <sub>6</sub> |
| Gallium  | 62                                   | 577                              | -0.53                                                          | Traces in various minerals                          | Reduction with H <sub>2</sub> or electrolysis                                             |
| Indium   | 81                                   | 556                              | -0.34                                                          | Traces in various minerals                          | Reduction with H <sub>2</sub> or electrolysis                                             |
| Thallium | 95                                   | 589                              | 0.72                                                           | Traces in various minerals                          | Electrolysis                                                                              |

TABLE 18.9 Selected Physical Properties, Sources, and Methods of Preparation for the Group 3A Elements

Found as oxides  $Al_2O_3 + Cr^{3+} = ruby$   $Al_2O_3 + Ti = sapphire$ Principles of Chemistry II



Aluminum is a very useful metal Where does it come from?

All "Bauxite" to begin with A mix of aluminum, iron, and silicon oxides

"Bayer process" to purify to only  $Al_2O_3$  (Alumina) (first dissolve in base only Al and Si compounds dissolve the lower the temp and  $Al_2O_3$  is less soluble so it fall out first)

Then heat it up with Carbon to get  $AI + CO_2$ 

### **Boric Acid**

 $B(OH)_3 + H_2O \longrightarrow B(OH)_4^- + H^+$ 

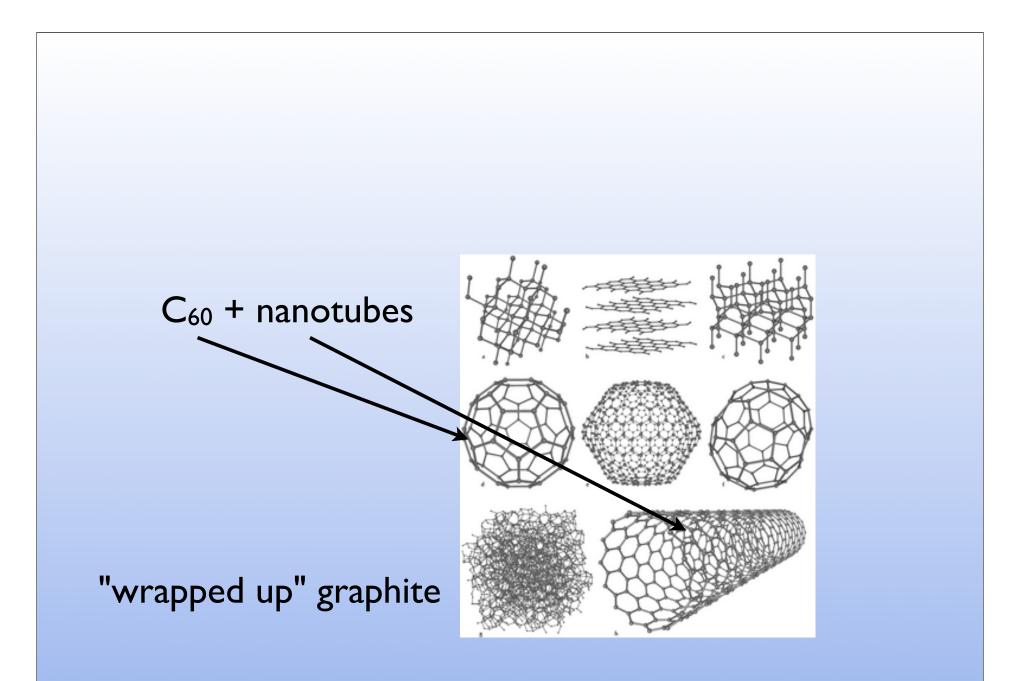
(toxic to many insects. Disrupts metabolism and its abrasive)

#### NaBH<sub>4</sub>

Strong Reducing Agent

BH<sub>4</sub><sup>-</sup> ("excess electrons")

**Principles of Chemistry II** 


# Group IV

Carbon Allotropes

Diamond All sp<sup>3</sup> carbon Very strong tetrahedral network insulating



Graphite All sp<sup>2</sup> carbon in a plane other p orbital give in-plane pi bond delocalized pi electrons make graphite conductive plane can "slip" over each other = pencil

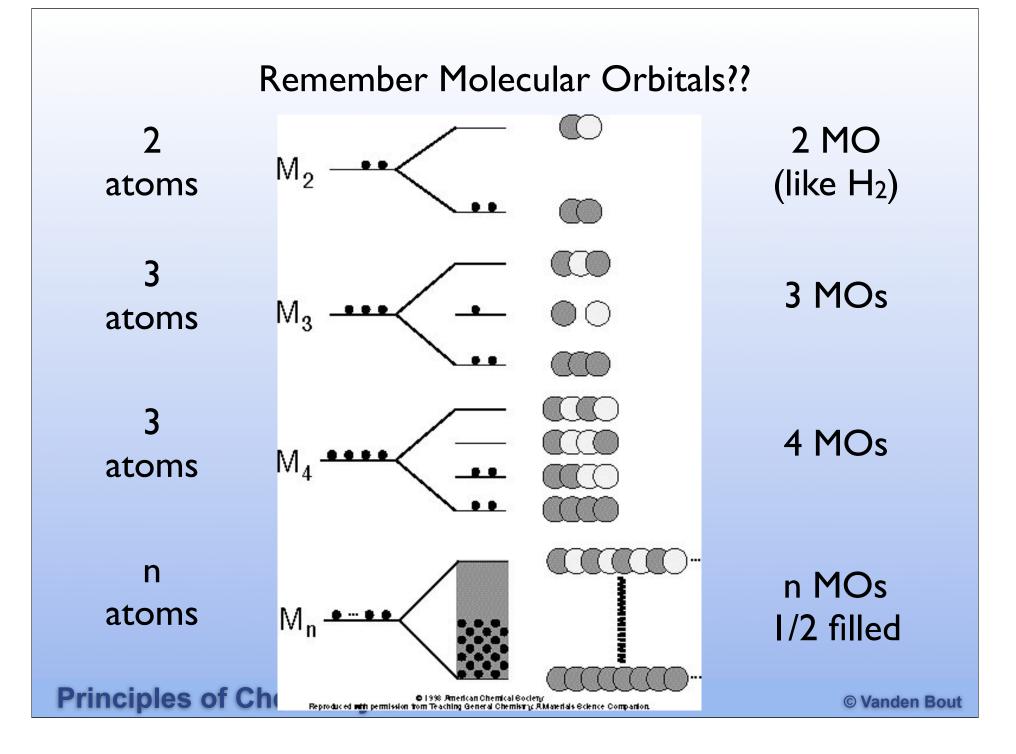


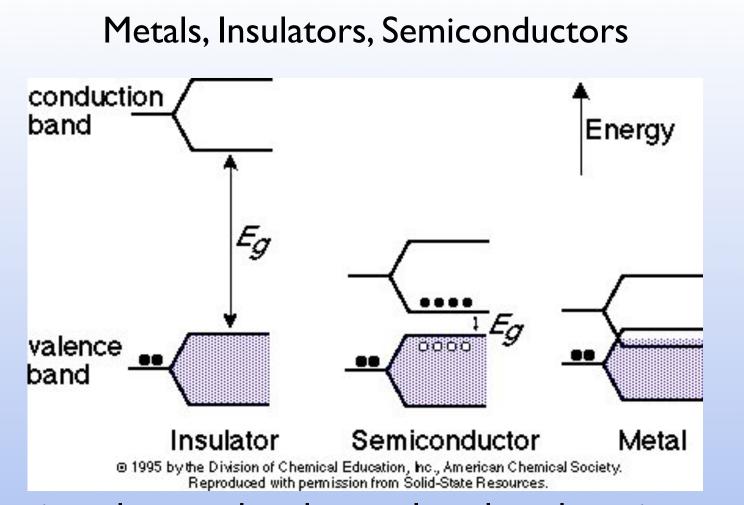
**Principles of Chemistry II** 

Carbon chemistry = Organic Chemistry

We'll have two whole lectures just on this

**Principles of Chemistry II** 

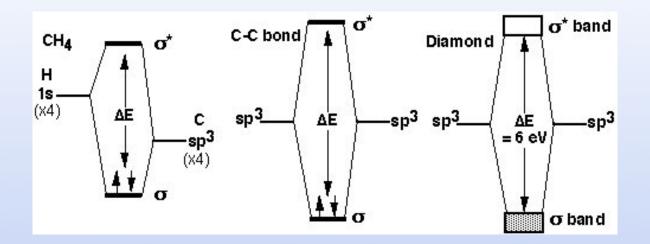

The other major player in Group IV


#### Silicon

#### the basis of all computer chips

## Metallic Bonding "thinking of all the atoms as one big molecule"

**Principles of Chemistry II** 






Semiconductors, bands are close but there is a gap. Need thermal energy to move into unoccupied states Or dopant (add or remove an electron)

**Principles of Chemistry II** 

#### Metals, Insulators, Semiconductors



Insulator unoccupied energy levels are much higher in energy

Note in graphite the sp2 electrons make a widely spaced band, but the remaining 2p orbitals make overlapping bands (metallic)

**Principles of Chemistry II** 

# Why is Silicon semiconducting while Diamond is an insulator (same structure)

A. Silicon is larger so their is less interaction between the atoms and a lower splitting between the levels

B. Silicon is smaller so their is less interaction between the atoms and a lower splitting between the levels

C. Silicon is larger so their is more interaction between the atoms and a greater splitting between the levels

## How might you "add an electron" to silicon?

- A. Substitute a P for a silicon atom in the solid
- B. Substitute a B for a silicon atom in the solid
- C. Substitue a C for a silicon atom in the solid

## Group III will take an electron and "leave" a positive charge in the Si lattice P-doping (P = positive)

Group V will "give an electron" and resulting in a negative charge in the Si lattice N-doping (N = negative)

Last but not least

Silicone (rubber)

Back bone

...-Si-O-Si-O-Si-O-....

Silicon can form two more bonds Add various organic molecules for different properties

household "caulk", silly putty, ....

**Principles of Chemistry II** 

Group V, VI, VII Four very important chemicals Phophoric Acid (H<sub>3</sub>PO<sub>4</sub>) Ammonia (NH<sub>3</sub>) Sulfuric Acid (H<sub>2</sub>SO<sub>4</sub>) Chlorine Gas (Cl<sub>2</sub>)

| THOUSANDS OF TONS          |        |        |        |        |        | PRODUCTION |        |        |        |        |        |
|----------------------------|--------|--------|--------|--------|--------|------------|--------|--------|--------|--------|--------|
| UNLESS OTHERWISE NOTED     | 1991   | 1992   | 1993   | 1994   | 1995   | 1996 1997  | 1998   | 1999   | 2000   | 2001   | la     |
| Aluminum sulfate₀          | 1,185  | 1,047  | 1,050  | 1,140  | 1,144  | 1,197      | 1,161  | 1,166  | 1,196  | 1,091  |        |
| Ammoniac,d                 | 17,169 | 17,924 | 17,195 | 17,869 | 17,403 | 17,923     | 17,891 | 18,475 | 17,337 | 16,806 |        |
| Ammonium nitratee          | 7,819  | 7,981  | 8,280  | 8,568  | 8,489  | 8,498      | 8,604  | 9,079  | 7,630  | 7,498  |        |
| Ammonium sulfater          | 2,243  | 2,391  | 2,432  | 2,584  | 2,647  | 2,662      | 2,702  | 2,787  | 2,599  | 2,868  |        |
| Chlorineg                  | 11,572 | 11,757 | 12,079 | 12,187 | 12,395 | 12,460     | 12,922 | 12,841 | 13,353 | 13,131 |        |
| Hydrochloric acidh         | 3,301  | 3,610  | 3,492  | 3,754  | 3,904  | 4,116      | 4,570  | 4,659  | 4,499  | 4,718  |        |
| Hydrogen, bcf, 100%i,j     | 153    | 162    | 213    | 331    | 352    | 386        | 526    | 552    | 454    | 481    |        |
| Nitric acid, 100%k         | 7,927  | 8,136  | 8,254  | 8,714  | 8,840  | 9,205      | 9,433  | 9,285  | 8,945  | 8,479  |        |
| Nitrogen gas, bcf, 100%i,i | 770    | 818    | 796    | 870    | 844    | 816        | 809    | 871    | 858    | 933    |        |
| Oxygen, bcf, 100%          | 470    | 515    | 547    | 605    | 630    | 682        | 743    | 676    | 685    | 661    |        |
| Phosphoric acid, P2O5      | 12,109 | 12,826 | 11,515 | 12,792 | 13,134 | 13,210     | 13,159 | 13,891 | 13,708 | 13,143 |        |
| Sodium chlorate            | 449    | 555    | 539    | 559    | 617    | 662        | 626    | 779    | 818    | 939    |        |
| Sodium hydroxide           | 11,713 | 12,244 | 12,466 | 12,539 | 11,408 | 11,563     | 10,973 | 13,113 | 13,199 | 11,518 |        |
| Sodium sulfatem            | 794    | 609    | 592    | 652    | 711    | 664        | 706    | 629    | 660    | 509    | 569    |
| Sulfuric acidn             | 43,466 | 44,524 | 39,839 | 44,813 | 47,519 | 47,770     | 47,929 | 48,512 | 44,756 | 44,032 | 40,054 |
| Titanium dioxide₀          | 1,095  | 1,253  | 1,279  | 1,380  | 1,382  | 1,352      | 1,466  | 1,459  | 1,493  | 1,547  | 1,463  |

#### **Principles of Chemistry II**

## Sulfuric Acid

used for lots of things Steel production Phosphoric Acid Production Recovery of Ammonia in Steel Production Industrialized Nation = Nation with lots of Sulfuric Acid

Fertilizer

Ammonia (N source) + Phosphoric Acid (P source)

Ammonia used to make Nitric Acid

**Principles of Chemistry II**