
Spring 2009 CH 302:

30 Practice Problems Covering the Equilbrium Problem Types You Will Find on Exam 2.

	he pH of an equimolar solution of acetic acid + sodium acetate is found to be 4.75. hat will happen to the pH of this solution if we dilute it with water to twice the initial volume?
	\mathbf{A} . The pH will rise and be higher than 4.75.
	B. The pH will fall and be lower than 4.75.
	C. The pH will remain 4.75.
	D. No answer is possible without knowing the actual initial concentrations.
2) Th	ne pH of a solution that is 0.25 M (NH ₄) ₂ SO ₄ (aq) and 0.50 M NH ₃ (aq) is:
	A. 4.75
	B. 8.95
	C. 9.25
	D. 9.56
	hat will be the pH in a titration in which 5.0 mL of 0.120 M HNO ₃ (aq) is added to 25.0 mL of 0.240 M OH(aq)? A. 0.74 B. 13.26 C. 13.33 D. 13.38
of	ne volume, in mL, calculated to one decimal point, of 0.25 M HCl(aq) required to reduce the pH of 50 mL a 0.40 M ammonia solution to a value of 7.00 would be: A. 80.0 B. 79.6 C. 50.0
	D. 49.8

5) A buffer solution of volume 200.0 mL is 0.250 M Na₂HPO₄(aq) and 0.250 M KH₂PO₄(aq). The pH resulting from the addition of 50.0 mL of 0.100 M NaOH(aq) to the buffer solution will be

10)	Wh	en sodium nitrite is added to HNO ₂ (aq),
		\mathbf{A} . the equilibrium concentration of HCOOH(aq) decreases.
		B. the pH of the solution increases.
		C. the K_a increases.
		D. the pH of the solution does not change.
		E. the pH of the solution decreases.
11)	100	mL of each of the following solutions is mixed; which one of the mixed solutions is a buffer?
		A. $1.0 \text{ M NH}_3(\text{aq}) + 0.6 \text{ M KOH}(\text{aq})$
		\mathbf{B}_{\bullet} 1.0 M NH ₄ Cl(aq) + 1.0 M KOH(aq)
		C. $1.0 \text{ M NH}_3(aq) + 0.4 \text{ M HCl}(aq)$
		D. $1.0 \text{ M NH}_4\text{Cl(aq)} + 0.4 \text{ M HCl(aq)}$
		E. $1.0 \text{ M NH}_3(aq) + 1.0 \text{ M HCl}(aq)$
12)	Cho × 10	pose the effective pH range of an aniline/anilinium chloride buffer. The value of the K_b for aniline is 4.3 0^{-10} .
		A. 3.6–5.6
		B. 8.4–10.4
		C. 1.1–3.1
		D. 5.1–7.1
		E. 10.1–12.1
13)		ich of the following mixtures gives a buffer with a pH greater than 7.0? For HCNO, $K_a = 2.2 \times 10^{-4}$ and NH ₃ , $K_b = 1.8 \times 10^{-5}$.
		A. 10 mL of 0.1 M NH ₃ (aq) + 10 mL of 0.1 M HCl(aq)
		B. 10 mL of 0.1 M HCNO(aq) + 10 mL of 0.1 M NaOH(aq)
		C. 10 mL of 0.1 M HCNO(aq) + 5.0 mL of 0.1 M NaOH(aq)
		D. 10 mL of 0.1 M NH ₃ (aq) + 10 ml of 0.1 M HCNO(aq)
		E. 10 mL of 0.1 M NH ₃ (aq) + 5.0 mL of 0.1 M HCl(aq)

14) If a small amount of a strong base is added to buffer made up of a weak acid, HA, and the sodium salt of its

conjugate base, NaA, the pH of the buffer solution does not change appreciably because

 \square A. the K_a of HA is changed.

B. No reaction occurs.

 \mathbb{C} the strong base reacts with A⁻ to give HA, which is a weak acid.

 \square D. the strong base reacts with HA to give AOH and H⁺.

 \mathbf{E} the strong base reacts with HA to give \mathbf{A}^- , which is a weak base.

15) At the stoichiometric point in the titration of 0.130 M HCOOH(aq) with 0.130 M KOH(aq),

 \square A, the pH is 7.0.

 B_{\bullet} [HCOOH] = 0.0650 M.

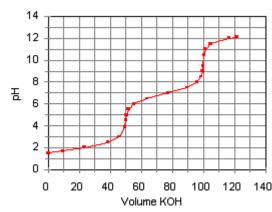
 C_{\bullet} [HCO₂-] = 0.130 M.

 \square **D.** the pH is greater than 7.

 \mathbf{L} E. the pH is less than 7.

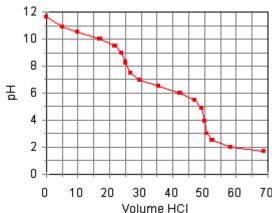
16) For the titration of 50.0 mL of 0.020 M aqueous salicylic acid with 0.020 M KOH(aq), calculate the pH after the addition of 55.0 mL of KOH(aq). For salycylic acid, $pK_a = 2.97$.

A. 10.98


B. 7.00

C. 11.26

D. 12.02


E_a 12.30

17) The titration curve for the titration of 0.100 M H₂SO₃(aq) with 0.100 M KOH(aq) is given below.

Estimate pK_{a1} and pK_{a2} of H_2SO_3 .

18) The titration curve for the titration of 0.100 M Na₂CO₃(aq) with 0.100 M HClO₄(aq) is:

The main species in the solution after the addition of 35 mL of HClO₄ are

- \blacksquare A. HCO_3^- , H_2CO_3 , Na^+ , and ClO_4^- .
- $\mathbb{L}_{\mathbf{B}_{\bullet}}$ H₂CO₃, Na⁺, and ClO₄⁻.
- \mathbb{C} C₃ CO₃²⁻, HCO₃-, Na⁺, and ClO₄⁻.
- \mathbf{D} , CO_3^{2-} , Na^+ , and ClO_4^- .
- $\mathbf{E}_{\mathbf{E}_{\mathbf{A}}}$ HCO₃⁻, Na⁺, and ClO₄⁻.
- 19) What is the relationship between the solubility in water, s, and $K_{\rm sp}$ for the ionic solid Ca₃(PO₄)₂?
 - $K_{\rm sp} = 72 {\rm s}^5$
 - $\mathbb{C}_{\mathbf{B}_{\mathbf{s}}} K_{\mathrm{sp}} = 5\mathrm{s}$
 - $\mathbb{C}_{\mathbf{c}} K_{\mathrm{sp}} = 6\mathrm{s}^2$
 - $\square K_{\rm sp} = {\rm s}^5$
- 20) Which of the following water-insoluble salts is more soluble in 1.0 M HClO₄(aq)?
 - **C** A. AgBr
 - B. PbF₂
 - \mathbf{C} , $\mathrm{Hg_2Br_2}$
 - \square **D.** PbI₂
 - E. AgClO₄

21) If e	equal volumes of 0.004 M Pb(NO ₃) ₂ (aq) and 0.004 M KI(aq) are mixed, what reaction, if any, occurs? evalue of $K_{\rm sp}$ for PbI ₂ is 1.4×10^{-8} .
0	\mathbf{A}_{\bullet} . The solution turns purple because of formation of I_2 .
	B. $PbI_2(s)$ precipitates.
	C. KNO ₃ (s) precipitates.
	D. No reaction occurs.
C	E. The value of $K_{\rm sp}$ changes to 9×10^{-9} .
22) If y	you wish to increase the solubility of silver benzoate, a preservative, you would
	A. add sodium hydroxide.
	B. decrease the pH.
	C. add sodium acetate.
	D. add sodium benzoate.
	E. add silver nitrate.
sol	nk, from greater to least, the equilibrium concentration of species formed when 0.2M H ₂ SO ₄ is placed in ution.
der unl the	u have watched a fellow student derive the exact solution for a dilute strong acid in water. Feel free to ive a similar solution for a dilute weak acid case (or look at the equation in the notes.) How many more knowns are there for the dilute weak acid than the dilute weak acid? What is the number of coefficients in charge balance equation for weak acid case? How
rid Sol Sol Sol Wh	nsider the following solutions made by dumpling a polyprotic acid, H3Y, or its salts into water (hint, get of those pesky spectators): ution I: H ₃ Y ution II: Li ₂ NaY ution III: K ₂ HY and K ₂ NaY ution IV: CaHY at are the simple acid/base equations you would use to find the pH for these solutions?

	ution is made by placing 100 ml of 0.3M ammonia and 200 ml of 0.5M ammonium nitrate in water. is the buffer capacity for this solution?
Answ	ver
	a drop of aqueous HCl on chalk (calcium carbonate) and watch the fizzing begin. Name all the ical species formed from the carbonate and their associated chemical equilibria.
	ider a solution made by placing 10 ⁻⁸ M KOH and 0.1 M ammonia in water. Rank from most to least, becies that provide the greatest number of hydroxides.
	• water> KOH > ammonia
	B. KOH > ammonia > water
	C. KOH > water > ammonia
	o. ammonia? water > KOH
stron	ming equal amounts of each are placed in water, which of the following compounds produces the gest acid? A. The acid of sodium formate which has a K_b of 10^{-9} ? B. Acetic acid which has a salt with a K_b of 5×10^{-10} ? C. Pure water D. Tartaric acid which has a K_a of 1×10^{-6} E. Ammonia which has a salt with a K_a of 5×10^{-10} ?
calcu	h of the following solutions would not require more than one equilbrium constant to accurately late pH? A. A mixture of methanol and water. B. A 0.1 M solution of sulfuric acid.
	C. A solution of sodium bicarbonate.
	D. A 10 ⁻⁶ M solution of ammonia? An equimolar solution of Na ₂ LiPO ₄ and Na ₂ HPO ₄ ?
E-3 1	E A DECUMENDIAL SOURION OF INACTIFUA AND INACTIFUA?