- 1. Which of the following pairs of solutions would result in a buffer upon mixing?
 - 1. 25 mL of 4 M HCl & 15 mL of 4 M HNO₂
 - 2. 200 mL of 0.5 M LiOH & 100 mL of 0.5 M H₂SO₄
 - 3. 100 mL of 1 M NH₃ & 10 mL of 10 M HNO₃
 - 4. 150 mL of 3 M Ba(OH)₂ & 200 mL of 2 M HClO
 - 5. 100 mL of 1 M CH₃COOH & 50 mL of NaOH
- 2. What would be the pH of a solution prepared from 2 L of H_2O , 85 g of NH_3 and 98 g of NH_4Br ? Assume the K_h of ammonia is 2×10^{-5} .
 - 1. 4
 - 2. 5.4
 - 3.10
 - 4. 8.6
 - 5. 7
- 3. Two liters of a buffer containing 0.6 M CH_3NH_2 and 0.8 M CH_3NH_3Cl has 102.4 g of HI added to it. What is the new pH? Assume the K_b of CH_3NH_3 is $6x10^{-4}$.
 - 1. 6
 - 2. 3
 - 3. 11
 - 4. 4
 - 5.10
 - 6.8
- 4. A 0.08 M CH_3NH_2 solution is titrated against a 0.08 M HCl solution. Assuming the K_b of CH_3NH_2 is 4×10^{-10} , what is the pH at the equivalence point?
 - 1. 3
 - 2. 7
 - 3.9
 - 4. 5
 - 5. not enough information
- 5. Consider the molecule ethylenediaminetetraacetic acid (EDTA):

As drawn above, how many K_a would be needed to describe the complete deprotonation of EDTA?

- 1.4
- 2.6
- 3. 3
- 4. 5
- 6. What would be the difference in pH of a 1 M solution of Na_2AsO_4 and a 1 M solution of Na_2HAsO_4 ? Assume H_3AsO_4 has a pK_{a1} of 2 and a pK_{a2} of 7 and a pK_{a3} of 12.
 - 1. 7
 - 2.4.5
 - 3. 9.5
 - 4. 5
 - 5. 2.5

- 7. A student erroneously calculated that a solution consisting solely of a weak base dissolved in water had a pH of 6. Which two of the following might have been true?
 - \dot{I} . $K_b < 10^{-11}$
 - II. $K_b > 10^{-3}$
 - III. $C_b > 10^{-1}$
 - IV. $C_b < 10^{-4}$
 - 1. I and IV only
 - 2. II and III only
 - 3. I and III only
 - 4. II and IV only
- 8. An aqueous system with Na_2CO_3 , NaCl and NH_4Cl dissolved in it would require how many equations for a full solution?
 - 1. 3
 - 2. 7
 - 3. 4
 - 4.6
 - 5. 9