- 1. Which of the following expressions would be equal to the rate of the reaction below? $2 \text{ KMnO}_4 + 3 \text{ Na}_2\text{SO}_3 + \text{H}_2\text{O}$ $2 \text{ MnO}_2 + 3 \text{ Na}_2\text{SO}_4 + 2 \text{ KOH}$
 - 1. -(Δ[KOH] / 2·Δt)
 - 2. $-(\Delta[Na_2SO_4] / \Delta t)$
 - 3. (2·Δ[MnO₂] / Δt)
 - 4. $(\Delta[H_2O] / \Delta t)$
 - 5. $-(\Delta[Na_2SO_3] / 3 \cdot \Delta t)$
 - 6. -(Δ[KMnO₄] / Δt)

2. Consider the data below:

Experiment number	[A] M	[B] M	[C] M	[D] M	initial rate M∙s ⁻¹
1	0.025	0.03	0.04	0.056	1.04 x 10 ⁻⁶
2	0.025	0.12	0.04	0.056	4.16 x 10 ⁻⁶
3	0.025	0.015	0.08	0.056	5.2 x 10 ⁻⁷
4	0.075	0.03	0.01	0.056	9.36 x 10 ⁻⁶
5	0.025	0.06	0.07	0.112	1.04 x 10 ⁻⁶

What is the overall order of this reaction?

- 1.1
- 2.2 3.3
- 5. 5 4. 4
- 5.5
- 6.6

3. What would be the units of the rate constant (k) for the rate law below?

rate = $k \cdot [O_2] \cdot [CO]^{-1} \cdot [CI_2]^1$

- 1. s⁻¹
- 2. M⁻²·s⁻¹
- 3. м⁻¹.s⁻¹
- 4. M¹·s⁻¹

4. Consider two hypothetical zero-order reactions. If reaction 1 is faster than reaction 2 at room temperature, but slower than reaction 2 at much higher temperatures, then reaction 1 must have the (larger/smaller) activation energy and must have the (larger/smaller) pre-exponential factor. (Hint: consider both the Arrhenius equation and combined Arrhenius equation.)

- 1. larger, smaller
- 2. larger, larger
- 3. smaller, smaller
- 4. smaller, larger
- 5. Consider the elementary reaction:

 $H_2CO_3(aq) = CO_2(aq) + H_2O(I)$

If k = 3.6 x 10^2 s⁻¹, and there is initially 0.781 M H₂CO₃, what is the [H₂CO₃] after 1.2 ms have passed?

- 1. 0.507 M
- 2. 0.349 M
- 3. 0.584 M
- 4. 1.203 M
- 6. Consider the reaction:

If an aqueous system initially has a [AgClO] of 112 mM and 3 minutes later has a [AgClO] of 7 mM, what is the half life of $H_2O_2(aq)$?

- 1. 90 seconds
- 2. 180 seconds
- 3. 60 seconds
- 4. 45 seconds
- 5. not enough information

7. To which of the following reactions would collision state theory not apply? (Note: consider the direction of the arrow in arriving at the correct answer).

1. $N_2(g) + 3 H_2(g)$ 2 $NH_3(g)$ 2. $CH_4(g) + 2 O_2(g)$ $CO_2(g) + 2 H_2O(g)$ 3. 2 $H_2(g) + O_2(g)$ 2 $H_2O(g)$ 4. $CaCO_3(s)$ $CaO(s) + CO_2(g)$

8. Consider the reaction mechanism below: step 1: $2 \text{ NO}_2(g) = 2 \text{ NO}(g) + \text{O}_2(g)$ step 2: $\text{Br}_2(g) + \text{NO}(g) = \text{Br}_2\text{NO}(g)$ step 3: $\text{Br}_2\text{NO}(g) + \text{NO}(g) = 2 \text{ BrNO}(g)$

overall: $Br_2(g) + 2 NO_2(g) = 2 BrNO(g) + O_2(g)$

If step 3 is the slow step, addition of which of the species below would slow down the observed rate of the reaction?

- 1. NO(g)
- 2. BrNO(g)
- 3. Br₂(g)
- 4. O₂(g)
- 5. Br₂NO(g)