Spring 2009 CH302 Practice Quiz 2 Prepared by DAL

 The osmotic pressure of 1.00 g of a polymer dissolved in benzene to give 200 mL of solution is 1.50 kPa at 25°C. Estimate the average molar mass of the polymer. The gas law constant is 0.0821 L-atm-mol⁻¹-K⁻¹.

• A. $41 \ 300 \ \text{g} \ \text{mol}^{-1}$ • B. $8260 \ \text{g} \ \text{mol}^{-1}$ • C. $693 \ \text{g} \ \text{mol}^{-1}$ • D. $1650 \ \text{g} \ \text{mol}^{-1}$ • E. $62 \ 000 \ \text{g} \ \text{mol}^{-1}$

Answer: B

2 Consider the reaction

) $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$ At 298 K, $K_c = 1.3 \times 10^{-3}$, whereas at 783 K, $K_c = 2.2 \times 10^{-2}$. Which of the following is true?

- A. The reaction is exothermic.
- **B**. The reaction is endothermic.
- C. At 298 K, $K = 3.2 \times 10^{-2}$.
- **D.** At 298 K, the reaction is likely to be spontaneous.
- \frown E. At 783 K, more HI(g) is produced.

Answer: B

- 3) At 25°C, ΔG_r° for the reaction $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ is $-141.74 \text{ kJ} \cdot \text{mol}^{-1}$. Calculate the value of K_c for this reaction.
 - A. 1.74×10^{26} • B. 7.01×10^{24} • C. 2.65×10^{12} • D. 6.56×10^{13}

Answer: A

- 4) Consider the gas-phase reaction, 2 SO₂(g) + O₂(g) <=> 2 SO₃(g), for which K_p = 2 at a given temperature. If the mixture is analyzed and found to contain 2.3 bar of SO₂, 4.9 bar of O₂ and 7.2 bar of SO₃, describe the situation:
 - $^{\circ}$ A. Q < K and more reactants will be made to reach equilibrium.
 - $^{\circ}$ **B.** Q < K and more products will be made to reach equilibrium.
 - $^{\circ}$ C. Q > K and more reactants will be made to reach equilibrium.
 - \square **D**. Q > K and more products will be made to reach equilibrium.
 - \square **E** Q = K and the reaction is at equilibrium

Answer: E

)

5 For the reaction

 $NH_3(g) + H_2S(g) \rightleftharpoons NH_4HS(s)$

 $K_c = 9.7$ at 900 K. If the initial concentrations of NH₃(g) and H₂S(g) are 2.0 *M*, what is the equilibrium concentration of H₂S(g)?

- A. 1.9 M
- **B**. 0.20 M
- C. 1.7 M
- **D.** 0.10 M
- E. 0.32 M

Answer: E

6) As you examine a chemical reaction to determine which compounds would you exclude from the mass expression? I) pure water II) liquid mercury III) metallic iron IV) solid NaCl

• A. I • B. III, IV

D. /

° C. I, II

• **D.** all of them would be excluded

C E. IV

Answer: D

)

7 Consider the reaction

 $3Fe(s) + 4H_2O(g) \rightleftharpoons 4H_2(g) + Fe_3O_4(s)$

If the volume of the container is reduced,

- $^{\circ}$ A. the equilibrium constant increases.
- **B.** more $H_2(g)$ is produced.
- C. no change occurs.
- **D.** more $H_2O(g)$ is produced.
- \bullet **E.** more Fe(s) is produced.

Answer: C

- 8) Of the following five materials, which has the lowest freezing point and the highest boiling point?
 - A. 1.5 m magnesium phosphate
 - **B.** 2.0 m potassium chloride
 - C. 1.0 m sodium chloride
 - **D.** 1.5 m aluminum nitrate
 - E. 1.5 m calcium chloride

Answer: A