Use the following table of standard reduction potentials: http://www.jesuitnola.org/upload/clark/refs/red_pot.htm

- 1. Consider the redox reaction: $VO^{2+}(aq) + MnO_4^{-}(aq)$ $MnO_2(s) + VO_2^{+}(aq)$
 - a. Balance it in acid
 - b. Balance it in base
 - c. Calculate E°cell
- 2. Consider the redox reaction: $BiO^+(aq) + 2Cr^{3+}(aq)$ $Bi(s) + Cr_2O_7^{2-}(aq)$
 - a. Balance it in acid
 - b. Balance it in base
 - c. Calculate E°cell
- 3. Consider the redox reaction: $Cd(s) + Co^{3+}(aq) + Cd^{2+}(aq) + Co^{2+}(aq)$
 - a. Balance it
 - b. Calculate E°cell
- 4. Consider the redox reaction: $Fe^{2+}(aq)$ $Fe(s) + Fe^{3+}(aq)$
 - a. Balance it
 - b. Calculate E°cell
- 5. What effect will raising the pH have on E°_{cell} for
 - a. the reacion in question 1 above?
 - b. the reacion in question 2 above?
- 6. Consider the answer to 3b above, If $[Co^{3+}]$ and $[Co^{2+}]$ were both 1 M, what concentration of $[Cd^{2+}]$ could be used to make a 2.5 V battery based on this reaction?
- 7. Consider the answer to 4b above. Using the Nernst equation, what ratio of $[Fe^{3+}]$ and $[Fe^{2+}]$ would be present if this cell were allowed to reach equilibrium at room temperature?
- 8. If E°_{cell} for a particular reaction is negative,
 - a. what are two things one could do to make the $E_{\mbox{cell}}$ positive?
 - b. what is only thing you could do to make E^{o}_{cell} positive (note this asks for the standard E)?
- 9. Rank the following species from worst to best oxidizing agent: $PbSO_4$, Na^+ , Fe^{3+} , Cl_2 and AgCl.

- 10. Rank the following species from best to worst reducing agent: Mn²⁺, Ni, H₂, Al, Hg₂²⁺.
 11. What will be produced at the cathode a. for the reaction in question 1?
 - b. for the reaction in question 2?
 - c. for the reaction in question 3?
 - d. for the reaction in question 4?
- 12. What will be consumed at the anode
 - a. for the reaction in question 1?
 - b. for the reaction in question 2?
 - c. for the reaction in question 3?
 - d. for the reaction in question 4?
- 12. Calculate ΔG
 - a. for the reaction in question 1
 - b. for the reaction in question 2
 - c. for the reaction in question 3
 - d. for the reaction in question 4
- 13. Calculate K
 - a. for the reaction in question 1
 - b. for the reaction in question 2
 - c. for the reaction in question 3
 - d. for the reaction in question 4
- 14. If a current of 1 ampere can plate 3 moles of a certain product in 10 hours,
 - a. how much of the same product could it plate in 20 minutes?
 - b. what current would be needed to plate 6 moles in just 2 hours?
- 15. If a 5.5845 g sample of Fe is plated from an unknown solution in 482 minutes at a constant current of 1 ampere, what was the oxidation state of the Fe ion is solution?
- 16. Complete the table below from memory

	Е	ΔG	K	Reduction	Oxidation	Cathode	Anode
--	---	----	---	-----------	-----------	---------	-------

Battery				
Electrolytic				

- 17. When electroplating metal (producing a solid metal from an ion by an electrolytic reaction), the amount of metal produced is
 - a. directly proportional to
 - b. inversely proportional to
- 18. Using the table mentioned at the top of this document, what species could
 - a. reduce $O_2(g)$ to $H_2O(I)$ bot not $NO_3^-(aq)$ to NO(g)
 - b. reduce $Cu^{2+}(aq)$ to $Cu^{+}(aq)$ but not $Pb^{2+}(aq)$ to Pb(s)
 - c. oxidize Ag(s) to $Ag^+(aq)$ but not $H_2O_2(aq)$ to $O_2(g)$
- 19. Determine the number of electrons gained/lost by the carbon atom in each reaction below

a.
$$CH_4 + 2 O_2 + CO_2 + 2 H_2O$$

b.
$$CH_4 + O_2 + CH_2O + H_2O$$

c.
$$2 CH_4 + O_2 + 2 CH_3OH$$

20. Consider the answer to question 19 above. How does a breaking a C-H bond and forming a C-O bond effect the oxidation state of C?