First, determine the order of reaction; since a linear relationship is seen for $\ln [C]$, the reaction is first order. Therefore, the rate is $k[C]$.
Data at 300K

Data at 310 K

Time(s)	[C]	1/[C]	$\ln [\mathrm{C}]$	[C]	Time (s)	[C]	$\ln [\mathrm{C}]$	1/[C]	[C]
1	0.12	8.333333	-2.1202	0.12	1	0.074	-2.6036	13.51351	0.074
2	0.074	13.51351	-2.603	0.074	2	0.027	-3.6119	37.03704	0.027
3	0.044	22.72727	-3.123	0.044	3	0.009	-4.7105	111.1111	0.009
4	0.027	37.03704	-3.611	0.027	4	0.0036	-5.6268	277.7778	0.0036
5	0.016	62.5	-4.135	0.016	5	0.0013	-6.6453	769.2308	0.0013
6	0.009	111.1111	-4.710	0.009	6	0.0005	-7.6009	2000	0.0005
8	0.0036	277.7778	-5.6268	0.0036	7	6.7E-05	-9.610	14925.37	$6.7 \mathrm{E}-05$
10	0.0013	769.2308	-6.6453	0.0013	10	9E-06	-11.607	109890.1	$9.1 \mathrm{E}-06$

Solve for rate constant, \mathbf{k}, and initial concentration, $\mathbf{C}_{\mathbf{0}}$, directly knowing the order, using integrated rate law: $\ln [\mathrm{C}]=-\mathrm{kt}+\ln [\mathrm{C} 0]$ so slope $=-\mathrm{k}$ and y intercept $=\ln \left[\mathrm{C}_{0}\right]$.
At $\mathbf{3 0 0 K}$ curve fit yields $y=-0.5 x-1.6 ; \mathbf{k}=\mathbf{0 . 5} \mathbf{s e c}^{-1}$ and $\left[\mathbf{C}_{\mathbf{0}}\right]=\mathbf{0 . 2 M}$
At $\mathbf{3 1 0} \mathbf{K}$ curve fit yields $y=-1.0 \mathrm{x}-1.6 ; \mathbf{k}=\mathbf{1 . 0} \mathbf{~ s e c}^{-1}$ and $\left[\mathbf{C}_{\mathbf{0}}\right]=\mathbf{0 . 2 M}$

- Solve for half life, $\mathrm{tl} / 2$, for second order reaction: $\mathrm{t}_{1 / 2}=0.693 / \mathrm{k}$

At $\mathbf{3 0 0} \mathbf{K}, \mathbf{t}_{1 / 2}=0.639 / 0.5 \mathrm{sec}^{-1}=\mathbf{1 . 3 9} \mathbf{~ s e c}$. At $\mathbf{3 1 0 K}, \mathbf{t}_{1 / 2}=0.693 / 1 \mathrm{sec}^{-1}=\mathbf{0 . 6 9 3} \mathbf{~ s e c}$

- Solve for activation energy, Ea using the combined Arrhenius equation :
$\ln \left(\mathrm{k}_{2} / \mathrm{k}_{1}\right)=(\mathbf{E a} / \mathrm{R})\left(1 / \mathrm{T}_{1}-1 / \mathrm{T}_{2}\right)$ so $\ln (1.0 / 0.5)=(\mathbf{E a} / 8.3)(1 / 300-1 / 310)$
and substituting, $\mathbf{E a}=53,500 \mathrm{~J}$ or $\mathbf{5 3 . 5} \mathbf{~ k J}$
- Solve for pre-exponential term, $\mathbf{A}: \mathrm{k}=\mathrm{A} \exp (-\mathrm{Ea} / \mathrm{RT})$ so $0.5=\operatorname{Aexp}(-53,500 / 8.3 * 300)$

Rearrange and solve for $\mathbf{A}=\mathbf{1 . 0 3 \times 1 0 9}$

Plotting the concentration vs time and drawing a tangent line at $\mathrm{x}=2$ will yield a line with a slope that is equal to the instantaneous rate at 2 seconds.

Data Set 2 Solution

Data at 300 K		Data at 313 K							
Time (s)	[C]	1/[C]	$\ln [\mathrm{C}]$	[C]	Time (s)	[C]	1/[C]	$\ln [\mathrm{C}]$	[C]
	Unk					Unk			
0	[C]0				0	[C]0			
1	0.182	5.494505	-1.7037	0.182	1	0.166	6.024096	-1.7957	0.166
2	0.166	6.024096	-1.7957	0.166	2	0.142	7.042254	-1.9519	0.142
3	0.153	6.535948	-1.8773	0.153	3	0.125	8	-2.0794	0.125
4	0.142	7.042254	-1.951	0.142	4	0.111	9.009009	-2.1982	0.111
5	0.133	7.518797	-2.0174	0.133	5	0.1	10	-2.3025	0.1
6	0.125	8	-2.0794	0.125	6	0.09	11.11111	-2.407	0.09
8	0.111	9.009009	-2.1982	0.111	8	0.076	13.15789	-2.577	0.076
10	0.1	10	-2.3025	0.1	10	0.066	15.15152	-2.71	0.066

Calculate order from method of initial rates (see handout on order of reaction) or from functional relationships of integrated rate law. Notice in this case that the $1 /[\mathrm{C}]$ result in the data table above is a straight line, indicating that this reaction is order $\mathrm{x}=2$ in [C]. So rate $=\mathrm{k}[\mathrm{C}]_{2}$. Solve for rate constant, \mathbf{k}, and initial concentration, $\mathbf{C} \mathbf{0}$, directly knowing the order, using integrated rate law: $1 /[\mathrm{C}]=\mathrm{kt}$ $+1 /\left[\mathrm{C}_{0}\right]$ so slope $=k$ and y intercept $=1 /\left[\mathrm{C}_{0}\right]$
At $\mathbf{3 0 0 K}$ curve fit yields $\mathrm{y}=0.5 \mathrm{x}+5 \quad$ At 313 K curve fit yields $\mathrm{y}=1.0 \mathrm{x}+5$
$\mathbf{k}=\mathbf{0 . 5} \mathbf{M}-\mathbf{s e c}-1$ and $1 /\left[\mathrm{C}_{0}\right]=5,\left[\mathrm{C}_{0}\right]=\mathbf{0 . 2} \mathbf{M} \quad \mathbf{k}=\mathbf{1 . 0} \mathrm{M}_{-1} \mathbf{s e c}^{\mathbf{s}} \mathbf{1}$ and $1 /\left[\mathrm{C}_{0}\right]=5,\left[\mathrm{C}_{0}\right]=\mathbf{0 . 2} \mathbf{M}$
Solve for half life, $\mathrm{t}_{1 / 2}$, for second order reaction: $\mathrm{t}_{1 / 2}=1 / \mathrm{k}\left[\mathrm{A}_{0}\right]$ and for 0.2 M
At $\mathbf{3 0 0} \mathbf{K}, \mathbf{t}_{1 / 2}=1 /((.2)(.5))=\mathbf{1 0} \mathbf{~ s e c}$ at $\mathbf{3 1 3 K}, \mathbf{t}_{1 / 2}=1 /((.2)(1)=\mathbf{5} \mathbf{~ s e c}$
Solve for activation energy, Ea using the combined Arrhenius equation :
$\ln \left(\mathrm{k}_{2} / \mathrm{k}_{1}\right)=(\mathbf{E a} / \mathrm{R})\left(1 / \mathrm{T}_{1}-1 / \mathrm{T}_{2}\right)$ so $\ln (1.0 / 0.5)=(\mathbf{E a} / 8.3)(1 / 300-1 / 313)$
and substituting, $\mathbf{E a}=41,600 \mathrm{~J}$ or 41.6 kJ
Solve for pre-exponential term, $\mathbf{A}: \mathrm{k}=\mathrm{A} \exp (-\mathrm{Ea} / \mathrm{RT})$ so $0.5=\mathrm{A} \exp (-41,600 / 8.3 * 300)$
Rearrange and solve for $\mathbf{A}=8.7 \times 106$
Data Set 3 Solution

Data at 300 K					Data at 305 K				
Time (s)	[C]	1/[C]	$\ln [\mathrm{C}]$	[C]	Time (s)	[C]	1/[C]	$\ln [\mathrm{C}]$	[C]
	Unk					Unk			
0	[C]0				0	[C]0			
0.05	0.1875	5.333333	-1.6739	0.1875	0.05	0.175	5.714286	-1.74297	0.175
0.1	0.175	5.714286	-1.7429	0.175	0.1	0.15	6.666667	-1.8971	0.15
0.15	0.1625	6.153846	-1.8170	0.1625	0.15	0.125	8	-2.0794	0.125
0.2	0.15	6.666667	-1.8971	0.15	0.2	0.1	10	-2.3025	0.1
0.25	0.1375	7.272727	-1.9841	0.1375	0.25	0.075	13.33333	-2.5902	0.075
0.3	0.125	8	-2.0794	0.125	0.3	0.05	20	-2.9957	0.05
0.35	0.1125	8.888889	-2.1848	0.1125	0.35	0.025	40	-3.6888	0.025
0.4	0.1	10	-2.302	0.1	0.4	0	N/A	N/A	0

Calculate order from method of initial rates (see handout on order of reaction) or from functional relationships of integrated rate law. Notice in this case that the [C] result in the data table above is already a straight line, indicating that this reaction is order $\mathrm{x}=0$ in [C].
So rate $=\mathrm{k}$. Solve for rate constant, \mathbf{k}, and initial concentration, $\mathbf{C} 0$, directly knowing the order, using integrated rate law: $\mathrm{C}=-\mathrm{kt}+\mathrm{C}_{0}$ so slope $=-k$ and y intercept $=C 0$
At $\mathbf{3 0 0 K}$ curve fit yields $\mathrm{y}=-0.25 \mathrm{x}-.2 \quad$ At $\mathbf{3 0 5} \mathbf{K}$ curve fit yields $\mathrm{y}=-.5 \mathrm{x}-.2$
$\mathrm{k}=0.25 \mathrm{Msec}-1$ and $\left[\mathrm{C}_{0}\right]=\mathbf{0 . 2} \mathrm{M} \quad \mathrm{k}=0.5 \mathrm{Msec}-1$ and $\left[\mathrm{C}_{0}\right]=0.2 \mathrm{M}$
Solve for half life, $\mathrm{t}_{1 / 2}$, for first order reaction: $\mathrm{t}_{1 / 2}=\mathrm{C}_{0} / 2 \mathrm{k}$
At $\mathbf{3 0 0}$ K, $\mathbf{t}_{1 / 2}=0.2 /((2)(0.25))=\mathbf{0 . 4} \mathbf{~ s e c}$ at $\mathbf{3 1 0 K}, \mathbf{t}_{\mathbf{1} / 2}=0.2 /((2)(.5))=\mathbf{0} .2 \mathbf{~ s e c}$
Solve for activation energy, Ea using the combined Arrhenius equation :
$\ln \left(\mathrm{k}_{2} / \mathrm{k}_{1}\right)=(\mathbf{E a} / \mathrm{R})\left(1 / \mathrm{T}_{1}-1 / \mathrm{T}_{2}\right)$ so $\ln (.5 / .25)=(\mathbf{E a} / 8.3)(1 / 300-1 / 305)$
and substituting, $\mathbf{E a}=105,400 \mathrm{~J}$ or $\mathbf{1 0 5 . 4} \mathbf{k J}$ Solve for pre-exponential term, $\mathbf{A}: \mathrm{k}=\mathrm{Aexp}(-\mathrm{Ea} / \mathrm{RT})$ so $0.5=\operatorname{Aexp}\left(-105,400 / 8.3^{*} 300\right)$
Rearrange and solve for $\mathbf{A}=\mathbf{1 . 1} \times 10^{9}$

