## Worksheet 4 Solutions. Data Set 1 Solution:

First, determine the order of reaction; since a linear relationship is seen for  $\ln[C]$ , the reaction is first order. Therefore, the rate is k[C].

| Data at | t 300K |          | Data at 310 K |        |          |         |         |          |         |
|---------|--------|----------|---------------|--------|----------|---------|---------|----------|---------|
| Time(s) | [C]    | 1/[C]    | ln[C]         | [C]    | Time (s) | [C]     | ln[C]   | 1/[C]    | [C]     |
| 1       | 0.12   | 8.333333 | -2.1202       | 0.12   | 1        | 0.074   | -2.6036 | 13.51351 | 0.074   |
| 2       | 0.074  | 13.51351 | -2.603        | 0.074  | 2        | 0.027   | -3.6119 | 37.03704 | 0.027   |
| 3       | 0.044  | 22.72727 | -3.123        | 0.044  | 3        | 0.009   | -4.7105 | 111.1111 | 0.009   |
| 4       | 0.027  | 37.03704 | -3.611        | 0.027  | 4        | 0.0036  | -5.6268 | 277.7778 | 0.0036  |
| 5       | 0.016  | 62.5     | -4.135        | 0.016  | 5        | 0.0013  | -6.6453 | 769.2308 | 0.0013  |
| 6       | 0.009  | 111.1111 | -4.710        | 0.009  | 6        | 0.0005  | -7.6009 | 2000     | 0.0005  |
| 8       | 0.0036 | 277.7778 | -5.6268       | 0.0036 | 7        | 6.7E-05 | -9.610  | 14925.37 | 6.7E-05 |
| 10      | 0.0013 | 769.2308 | -6.6453       | 0.0013 | 10       | 9E-06   | -11.607 | 109890.1 | 9.1E-06 |

Solve for rate constant, **k**, and initial concentration,  $C_0$ , directly knowing the order, using integrated rate law: ln [C] = -kt + ln [C<sub>0</sub>] so slope = -k and y intercept = ln[C<sub>0</sub>].

At 300K curve fit yields y = -0.5x-1.6; k = 0.5 sec<sup>-1</sup> and  $[C_0] = 0.2M$ 

At **310** K curve fit yields y = -1.0x-1.6;  $k = 1.0 \text{ sec}^{-1}$  and  $[C_0] = 0.2M$ 

• Solve for half life, t1/2, for second order reaction:  $t_{1/2}=0.693/k$ At **300 K**,  $t_{1/2}=0.639/0.5 \text{sec}^{-1}=1.39$  sec. At **310K**,  $t_{1/2}=0.693/1$  sec<sup>-1</sup> = 0.693 sec

• Solve for activation energy, **Ea** using the combined Arrhenius equation : ln  $(k_2/k_1) = (\mathbf{Ea}/\mathbf{R})(1/T_1 - 1/T_2)$  so ln $(1.0/0.5) = (\mathbf{Ea}/8.3)(1/300 - 1/310)$ and substituting, **Ea** = 53,500 J or **53.5 kJ** 

• Solve for pre-exponential term, A: k = Aexp(-Ea/RT) so 0.5 = Aexp(-53,500/8.3\*300)Rearrange and solve for  $A = 1.03 \times 10^9$ 



Plotting the concentration vs time and drawing a tangent line at x=2 will yield a line with a slope that is equal to the instantaneous rate at 2 seconds.

| Data at 3 | 00 K  |          |         |       | Data at 313 K |       |          |         |       |  |
|-----------|-------|----------|---------|-------|---------------|-------|----------|---------|-------|--|
| Time (s)  | [C]   | 1/[C]    | ln[C]   | [C]   | Time (s)      | [C]   | 1/[C]    | In[C]   | [C]   |  |
|           | Unk   |          |         |       |               | Unk   |          |         |       |  |
| 0         | [C]0  |          |         |       | 0             | [C]0  |          |         |       |  |
| 1         | 0.182 | 5.494505 | -1.7037 | 0.182 | 1             | 0.166 | 6.024096 | -1.7957 | 0.166 |  |
| 2         | 0.166 | 6.024096 | -1.7957 | 0.166 | 2             | 0.142 | 7.042254 | -1.9519 | 0.142 |  |
| 3         | 0.153 | 6.535948 | -1.8773 | 0.153 | 3             | 0.125 | 8        | -2.0794 | 0.125 |  |
| 4         | 0.142 | 7.042254 | -1.951  | 0.142 | 4             | 0.111 | 9.009009 | -2.1982 | 0.111 |  |
| 5         | 0.133 | 7.518797 | -2.0174 | 0.133 | 5             | 0.1   | 10       | -2.3025 | 0.1   |  |
| 6         | 0.125 | 8        | -2.0794 | 0.125 | 6             | 0.09  | 11.11111 | -2.407  | 0.09  |  |
| 8         | 0.111 | 9.009009 | -2.1982 | 0.111 | 8             | 0.076 | 13.15789 | -2.577  | 0.076 |  |
| 10        | 0.1   | 10       | -2.3025 | 0.1   | 10            | 0.066 | 15.15152 | -2.71   | 0.066 |  |

Calculate order from method of initial rates (see handout on order of reaction) or from functional relationships of integrated rate law. Notice in this case that the 1/[C] result in the data table above is a straight line, indicating that this reaction is order x = 2 in [C]. So rate = k [C]<sub>2</sub>. Solve for rate constant, **k**, and initial concentration,  $C_0$ , directly knowing the order, using integrated rate law: 1/[C] = kt $+ 1/[C_0]$  so slope = k and y intercept =  $1/[C_0]$ At **313 K** curve fit yields y = 1.0 x + 5

At **300K** curve fit yields y = 0.5 x + 5

 $k = 0.5 \text{ M}_{-1}\text{sec-1} \text{ and } 1/[C_0] = 5, [C_0] = 0.2 \text{ M}$ k = 1.0 M-1sec-1 and  $1/[C_0] = 5$ ,  $[C_0] = 0.2 M$ 

Solve for half life,  $t_{1/2}$ , for second order reaction:  $t_{1/2} = 1/k[A_0]$  and for 0.2 M

At 300 K,  $t_{1/2} = 1/((.2)(.5)) = 10$  sec at 313K,  $t_{1/2} = 1/((.2)(1) = 5$  sec

Solve for activation energy, Ea using the combined Arrhenius equation :

 $\ln (k_2/k_1) = (Ea/R)(1/T_1 - 1/T_2)$  so  $\ln (1.0/0.5) = (Ea/8.3)(1/300 - 1/313)$ 

and substituting, Ea = 41,600 J or 41.6 kJ

Solve for pre-exponential term, A: k = Aexp(-Ea/RT) so 0.5 = Aexp(-41,600/8.3\*300)

Rearrange and solve for  $A = 8.7 \times 10^{6}$ 

## **Data Set 3 Solution**

| Data at 300 K |        |          |         |        | Data at 305 K |       |          |          |       |  |
|---------------|--------|----------|---------|--------|---------------|-------|----------|----------|-------|--|
| Time (s)      | [C]    | 1/[C]    | ln[C]   | [C]    | Time (s)      | [C]   | 1/[C]    | ln[C]    | [C]   |  |
|               | Unk    |          |         |        |               | Unk   |          |          |       |  |
| 0             | [C]0   |          |         |        | 0             | [C]0  |          |          |       |  |
| 0.05          | 0.1875 | 5.333333 | -1.6739 | 0.1875 | 0.05          | 0.175 | 5.714286 | -1.74297 | 0.175 |  |
| 0.1           | 0.175  | 5.714286 | -1.7429 | 0.175  | 0.1           | 0.15  | 6.666667 | -1.8971  | 0.15  |  |
| 0.15          | 0.1625 | 6.153846 | -1.8170 | 0.1625 | 0.15          | 0.125 | 8        | -2.0794  | 0.125 |  |
| 0.2           | 0.15   | 6.666667 | -1.8971 | 0.15   | 0.2           | 0.1   | 10       | -2.3025  | 0.1   |  |
| 0.25          | 0.1375 | 7.272727 | -1.9841 | 0.1375 | 0.25          | 0.075 | 13.33333 | -2.5902  | 0.075 |  |
| 0.3           | 0.125  | 8        | -2.0794 | 0.125  | 0.3           | 0.05  | 20       | -2.9957  | 0.05  |  |
| 0.35          | 0.1125 | 8.888889 | -2.1848 | 0.1125 | 0.35          | 0.025 | 40       | -3.6888  | 0.025 |  |
| 0.4           | 0.1    | 10       | -2.302  | 0.1    | 0.4           | 0     | N/A      | N/A      | 0     |  |

Calculate order from method of initial rates (see handout on order of reaction) or from functional relationships of integrated rate law. Notice in this case that the [C] result in the data table above is already a straight line, indicating that this reaction is order x = 0 in [C]. So rate = k. Solve for rate constant, k, and initial concentration, C<sub>0</sub>, directly knowing the order, using integrated rate law:  $C = -kt + C_0$ so slope = -k and y intercept =  $C_0$ 

At **300K** curve fit yields  $y = -0.25 \times -.2$ 

At **305 K** curve fit yields y = -.5 x - .2k = 0.5 Msec -1 and  $[C_0] = 0.2$  M

k = 0.25 Msec-1 and  $[C_0] = 0.2$  M

Solve for half life,  $t_{1/2}$ , for first order reaction:  $t_{1/2} = C_0/2k$ At 300 K,  $t_{1/2} = 0.2/((2)(0.25)) = 0.4$  sec at 310K,  $t_{1/2} = 0.2/((2)(.5)) = 0.2$  sec

Solve for activation energy, Ea using the combined Arrhenius equation :

 $\ln (k_2/k_1) = (Ea/R)(1/T_1 - 1/T_2)$  so  $\ln (.5/.25) = (Ea/8.3)(1/300 - 1/305)$ 

and substituting,  $\mathbf{Ea} = 105,400 \text{ J}$  or 105.4 kJ Solve for pre-exponential term, A:  $\mathbf{k} = \text{Aexp}(-\text{Ea/RT})$  so 0.5 = Aexp(-105,400/8.3\*300)Rearrange and solve for  $A = 1.1 \times 10^9$