CH 302 Spring 2008 Worksheet 4 Practice Exam 1 (expect the exam to be more difficult)

- 1. Predict the signs of ΔH and ΔS for the sublimation of CO₂.
 - a. $\Delta H > 0$, $\Delta S > 0$
 - b. $\Delta H > 0, \Delta S < 0$
 - c. $\Delta H < 0, \Delta S > 0$
 - d. $\Delta H < 0, \Delta S < 0$
- 2. Vapor pressure increases _____ with temperature.
 - a. Linearly
 - b. Exponentially
 - c. Logarithmically
 - d. Quadratically
- 3. Which of the following salts will dissolve most easily in water?
 - a. KBr
 - b. MgO
 - c. BN
 - d. LiF

- 4. For this question, refer to the phase diagram shown above. What is the phase of this substance at -56°C and 5.1 atm?
 - a. Solid
 - b. Liquid
 - c. Gas
 - d. Mixture of solid and gas
 - e. Mixture of solid, liquid, and gas
 - f. Supercritical fluid

- 5. For this question, refer to the phase diagram shown above question 4. The substance is originally held in a container at -60°C and 20 atm. It is then heated to room temperature, and next allowed to expand to atmospheric pressure. What happens to the substance?
 - a. The liquid in the container boils.
 - b. The liquid in the container becomes a supercritical fluid.
 - c. The gas in the container becomes a supercritical fluid.
 - d. The solid in the container sublimes.
 - e. The solid in the container melts, then the resulting liquid boils.
 - f. The solid in the container sublimes, and then the resulting gas condenses.
- 6. 1 kg of water starts at 200°C and is allowed to cool to room temperature. For water, the specific heats are $c_{ice} = 2.093 \text{ J/g}^{\circ}\text{C}$, $c_{water} = 4.186 \text{ J/g}^{\circ}\text{C}$, and $c_{steam} = 2.009 \text{ J/g}^{\circ}\text{C}$. The enthalpy changes are $\Delta H_{fusion} = -335.5 \text{ J/g}$ and $\Delta H_{vaporization} = 2.26 \text{ kJ/g}$. What is ΔH_{sys} for this process?
 - a. -2775 J
 - b. -2775 kJ
 - c. +2775 kJ
 - d. -1745 kJ
 - e. +1745 kJ
- 7. Which of the following gases will be most soluble in water?
 - a. CH₄
 - $b. \quad O_2$
 - $c. \quad CCl_4 \\$
 - d. He
 - $e. \quad Cl_2$
- 8. Rank the following in terms of increasing miscibility with water: CH₃OH, CH₄, CH₃CH₂OH, CH₃CH₂CH₂OH.
 - a. $CH_3CH_2CH_2OH < CH_3CH_2OH < CH_3OH < CH_4$
 - b. $CH_4 < CH_3OH < CH_3CH_2OH < CH_3CH_2OH$
 - c. $CH4 < CH_3CH_2CH_2OH < CH_3CH_2OH < CH_3OH$
 - d. $CH_3OH < CH_3CH_2OH < CH_3CH_2CH_2OH < CH_4$
- 9. 25 g of acetic acid (CH₃COOH) and 75 g of ethanol (CH₃CH₂OH) are mixed together. At 25°C, the vapor pressures of these compounds are 16 and 59 torr, respectively. What is the vapor pressure of the mixture?
 - a. 37.50 torr
 - b. 48.25 torr
 - c. 26.75 torr
 - d. 50.25 torr
 - e. 24.75 torr

- 10. Butanol boils at 118°C and has a ΔH_{vap} of 50 kJ/mol. What is butanol's vapor pressure at room temperature, 25°C? Recall that 1 atm = 760 torr and R = 8.314 J/mol K.
 - a. 6.28 torr
 - b. 91965 torr
 - c. 756.4 torr
 - d. 763.7 torr
- 11. The equilibrium constant *K* for

 $2 \operatorname{SO}_3(g) \rightleftharpoons 2 \operatorname{SO}_2(g) + \operatorname{O}_2(g)$

is 2.5×10^{-25} at 298 K. Predict its value at 500. K The heat of vaporization for this reaction is + 198 kJ/mole.

- a. 65.1×10^{-25} b. 2.5×10^{-11} c. 2.5×10^{-8} d. 4×10^{10}
- 12. Which of these is **not** an example of using a colligative property to your advantage?
 - a. Adding salt to water so that your spaghetti cooks faster.
 - b. Mixing ethylene glycol and water in your radiator so that the liquid remains liquid over a wide range of temperatures.
 - c. Cooking your spaghetti in a pressure cooker so that it cooks faster.
 - d. Salting the roads after it snows.
- 13. 20 g of BaCl₂ is added to 1 L of water ($d_{water} = 1 \text{ g/mL}$). What is the boiling point of the water, given the boiling point of pure water is 100°C and K_b for water is 0.512 °C/m?
 - a. 99.852°C
 - b. 100.148°C
 - c. 99.951°C
 - d. 100.0492°C
 - e. 89.760°C
 - f. 110.240°C
- 14. Which is the correct expression of K given the reaction NaCl (aq) + AgNO₃ (aq) \rightarrow NaNO₃ (aq) + AgCl (s)

$$\mathrm{K} = \frac{\mathrm{[NaNO_3][AgCl]}}{\mathrm{[NaCl][AgNO_3]}}$$
a.

$$\begin{split} \mathrm{K} &= \frac{[\mathrm{NaCl}][\mathrm{AgNO}_3]}{[\mathrm{NaNO}_3][\mathrm{AgCl}]} \\ \mathrm{K} &= \frac{[\mathrm{NaNO}_3]}{[\mathrm{NaCl}][\mathrm{AgNO}_3]} \\ \mathrm{c}. \end{split}$$

- 15. Nothing happens. Which of the following values for K best reflects this statement?
 - a. 1×10^{-4} b. 1c. 1×10^{4} d. 1×10^{-14} e. 1×10^{62}
- 16. For some temperature, assume that K_p for the combustion reaction below is 10^5 . You mix 1 atm each of C₂H₅OH, O₂, H₂O, and CO₂. Which of the following is a possible set of equilibrium concentrations?

 $C_2H_5OH(g) + 3 O_2(g) \leftrightarrow 2 CO_2(g) + 3 H_2O(g)$

- a. $P_{C2H5O2} = 1.31$ atm, $P_{O2} = 1.92$ atm, $P_{CO2} = 0.390$ atm, $P_{H2O} = 0.0845$ atm
- b. $P_{C2H5O2} = 0.0652$ atm, $P_{O2} = 0.691$ atm, $P_{CO2} = 1.94$ atm, $P_{H2O} = 1.62$ atm
- c. $P_{C2H5O2} = 0.691$ atm, $P_{O2} = 0.0652$ atm, $P_{CO2} = 1.62$ atm, $P_{H2O} = 1.94$ atm
- d. $P_{C2H5O2} = 1.92$ atm, $P_{O2} = 1.31$ atm, $P_{CO2} = 0.0845$ atm, $P_{H2O} = 0.390$ atm
- 17. Calculate the equilibrium concentration of CO_2 , given that you start with 1 M each of CO, CO₂, and H₂ in water, and K_c = 223.

 $CO(aq) + H_2O(l) \leftrightarrow CO_2(aq) + H_2(aq)$

- a. 1.98 M
- b. 0.126 M
- c. 0.00893 M
- d. 1.87 M
- 18. For the formation of ammonia, imagine you start with 1.5 M N₂, 1 M H₂ and 2.5 M NH₃. Which way will the reaction shift, given $K_c = 3.8$?

$$N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g)$$

- a. To the products.
- b. To the reactants.
- c. It won't.
- d. Up.
- e. Down.

19. An exothermic reaction is placed over a flame. What happens to the reaction?

- a. Nothing happens.
- b. The reaction shifts toward the reactants.
- c. The reaction shifts toward the products.
- 20. The pressure on the vessel in which the following reaction is taking place is doubled. What happens to the reaction?

 $N_2(l) + O_2(g) \leftrightarrow 2 \text{ NO}(g)$

- a. Nothing happens.
- b. The reaction shifts toward the reactants.
- c. The reaction shifts toward the products.
- 21. At 298 K, ΔG for a given reaction is -25.7 kJ. What is K for this reaction at 298 K?
 - a. 1.01
 - b. 0.990
 - c. 3.20×10^4
 - d. 3.13×10^{-5}
 - e. 22.0
- 22. At some temperature, $K_w = 5 \times 10^{-14}$. What is the pOH of pure water at this temperature?
 - a. 6.00
 - b. 6.65
 - c. 7.00
 - d. 7.35
 - e. 8.00
- 23. Which of the following is the most likely temperature at which $K_w = 5 \times 10^{-14}$ as above, given $K_w = 1 \times 10^{-14}$ at room temperature?
 - a. 0 °C
 - b. 12 °C
 - c. 25 °C
 - d. 50 °C

24. What is the OH⁻ concentration of a solution that is pH 4.6?

- a. 9.4
- b. 2.5×10^{-5}
- c. 4×10^{-10}
- d. 1 x 10⁻¹⁰
- e. 7
- 25. Which of the following is the strongest base? a. Ammonia, $K_b = 1.8 \times 10^{-5}$

- b. Aniline, $K_b = 4.2 \times 10^{-10}$
- c. Dimethylamine, $K_b = 5.1 \times 10^{-4}$
- d. Pyridine, $K_b = 1.4 \times 10^{-9}$ e. Urea, $K_b = 1.5 \times 10^{-14}$
- 26. What is the pH of a 0.05 M solution of Ba(OH)₂. Hint, you really don't need a calculator to do this problem?
 - a. 1
 - b. 13
 - c. 1.3
 - d. 12.7
- 27. The pK_a of hydrofluoric acid (HF) is 3.15. If 132 g of HF is dissolved in 1 L of water, what is the pOH of the resulting solution?
 - a. 13.5
 - b. 12.83
 - c. 14.66
 - d. 1.17
 - e. 14.82
- 28. 1 mole of ethylenediamine is dissolved in 1 L water, and the resulting [OH⁻] is 3.16×10^{-11} M. What is K_a for ethylenediamine?
 - a. 10⁻²²
 - b. 10⁻⁷
 - c. 5 x 10⁻⁶
 - d. 1.8 x 10⁻²

29. Which of the following is **not** a strong acid?

- a. HF
- b. HCl
- c. HBr
- d. HI
- e. HClO₄
- f. HClO₃
- 30. 100 ml of 0.2 M formic acid and 200 ml of .1 M lithium formate are mixed together, What type of solution is formed and what is the pH? $Ka = 1 \times 10^{-4}$ for formic acid. Hint: You should feel silly if you use a calculator.
 - a. Buffer, 4
 - b. Weak acid, 2.3
 - c. Weak base, 10
 - d. Buffer, 2.3
 - e. Weak acid, 4
 - f. Weak base, 11.7