CH 302 Spring 2008 Worksheet 4

 Practice Exam 1 (expect the exam to be more difficult)1. Predict the signs of $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ for the sublimation of CO_{2}.
a. $\Delta \mathrm{H}>0, \Delta \mathrm{~S}>0$
b. $\Delta \mathrm{H}>0, \Delta \mathrm{~S}<0$
c. $\Delta \mathrm{H}<0, \Delta \mathrm{~S}>0$
d. $\Delta \mathrm{H}<0, \Delta \mathrm{~S}<0$
2. Vapor pressure increases \qquad with temperature.
a. Linearly
b. Exponentially
c. Logarithmically
d. Quadratically
3. Which of the following salts will dissolve most easily in water?
a. KBr
b. MgO
c. BN
d. LiF

4. For this question, refer to the phase diagram shown above. What is the phase of this substance at $-56^{\circ} \mathrm{C}$ and 5.1 atm ?
a. Solid
b. Liquid
c. Gas
d. Mixture of solid and gas
e. Mixture of solid, liquid, and gas
f. Supercritical fluid
5. For this question, refer to the phase diagram shown above question 4. The substance is originally held in a container at $-60^{\circ} \mathrm{C}$ and 20 atm . It is then heated to room temperature, and next allowed to expand to atmospheric pressure. What happens to the substance?
a. The liquid in the container boils.
b. The liquid in the container becomes a supercritical fluid.
c. The gas in the container becomes a supercritical fluid.
d. The solid in the container sublimes.
e. The solid in the container melts, then the resulting liquid boils.
f. The solid in the container sublimes, and then the resulting gas condenses.
6. $\quad 1 \mathrm{~kg}$ of water starts at $200^{\circ} \mathrm{C}$ and is allowed to cool to room temperature. For water, the specific heats are $\mathrm{c}_{\text {ice }}=2.093 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}, \mathrm{c}_{\text {water }}=4.186 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$, and $\mathrm{c}_{\text {steam }}$ $=2.009 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. The enthalpy changes are $\Delta \mathrm{H}_{\text {fusion }}=-335.5 \mathrm{~J} / \mathrm{g}$ and $\Delta \mathrm{H}_{\text {vaporization }}$ $=2.26 \mathrm{~kJ} / \mathrm{g}$. What is $\Delta \mathrm{H}_{\text {sys }}$ for this process?
a. -2775 J
b. -2775 kJ
c. +2775 kJ
d. -1745 kJ
e. +1745 kJ
7. Which of the following gases will be most soluble in water?
a. CH_{4}
b. O_{2}
c. CCl_{4}
d. He
e. Cl_{2}
8. Rank the following in terms of increasing miscibility with water: $\mathrm{CH}_{3} \mathrm{OH}$, $\mathrm{CH}_{4}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{OH}<\mathrm{CH}_{4}$
b. $\mathrm{CH}_{4}<\mathrm{CH}_{3} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
c. $\mathrm{CH} 4<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{OH}$
d. $\mathrm{CH}_{3} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{4}$
9. 25 g of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ and 75 g of ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$ are mixed together. At $25^{\circ} \mathrm{C}$, the vapor pressures of these compounds are 16 and 59 torr, respectively. What is the vapor pressure of the mixture?
a. $\quad 37.50$ torr
b. 48.25 torr
c. 26.75 torr
d. 50.25 torr
e. 24.75 torr
10. Butanol boils at $118^{\circ} \mathrm{C}$ and has a $\Delta \mathrm{H}_{\text {vap }}$ of $50 \mathrm{~kJ} / \mathrm{mol}$. What is butanol's vapor pressure at room temperature, $25^{\circ} \mathrm{C}$? Recall that $1 \mathrm{~atm}=760$ torr and $\mathrm{R}=$ $8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$.
a. 6.28 torr
b. 91965 torr
c. 756.4 torr
d. 763.7 torr
11. The equilibrium constant K for
$2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
is 2.5×10^{-25} at 298 K . Predict its value at 500 . K The heat of vaporization for this reaction is $+198 \mathrm{~kJ} / \mathrm{mole}$.
a. $\quad 65.1 \times 10^{-25}$
b. 2.5×10^{-11}
c. 2.5×10^{-8}
d. 4×10^{10}
12. Which of these is not an example of using a colligative property to your advantage?
a. Adding salt to water so that your spaghetti cooks faster.
b. Mixing ethylene glycol and water in your radiator so that the liquid remains liquid over a wide range of temperatures.
c. Cooking your spaghetti in a pressure cooker so that it cooks faster.
d. Salting the roads after it snows.
13. 20 g of BaCl_{2} is added to 1 L of water $\left(\mathrm{d}_{\text {water }}=1 \mathrm{~g} / \mathrm{mL}\right)$. What is the boiling point of the water, given the boiling point of pure water is $100^{\circ} \mathrm{C}$ and K_{b} for water is $0.512^{\circ} \mathrm{C} / \mathrm{m}$?
a. $99.852^{\circ} \mathrm{C}$
b. $100.148^{\circ} \mathrm{C}$
c. $99.951^{\circ} \mathrm{C}$
d. $100.0492^{\circ} \mathrm{C}$
e. $89.760^{\circ} \mathrm{C}$
f. $110.240^{\circ} \mathrm{C}$
14. Which is the correct expression of K given the reaction

$$
\begin{aligned}
\mathrm{NaCl}(\mathrm{aq})
\end{aligned}+\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{AgCl}(\mathrm{~s})
$$

b. $\mathrm{K}=\frac{[\mathrm{NaCl}]\left[\mathrm{AgNO}_{3}\right]}{\left[\mathrm{NaNO}_{3}\right][\mathrm{AgCl}]}$
c.

$$
\mathrm{K}=\frac{\left[\mathrm{NaNO}_{3}\right]}{[\mathrm{NaCl}]\left[\mathrm{AgNO}_{3}\right]}
$$

15. Nothing happens. Which of the following values for K best reflects this statement?
a. 1×10^{-4}
b. 1
c. 1×10^{4}
d. 1×10^{-14}
e. 1×10^{62}
16. For some temperature, assume that K_{p} for the combustion reaction below is 10^{5}. You mix 1 atm each of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}$, and CO_{2}. Which of the following is a possible set of equilibrium concentrations?

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

a. $\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 5 \mathrm{O} 2}=1.31 \mathrm{~atm}, \mathrm{P}_{\mathrm{O} 2}=1.92 \mathrm{~atm}, \mathrm{P}_{\mathrm{CO} 2}=0.390 \mathrm{~atm}, \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=0.0845 \mathrm{~atm}$
b. $\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 5 \mathrm{O} 2}=0.0652 \mathrm{~atm}, \mathrm{P}_{\mathrm{O} 2}=0.691 \mathrm{~atm}, \mathrm{P}_{\mathrm{CO} 2}=1.94 \mathrm{~atm}, \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=1.62 \mathrm{~atm}$
c. $\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 5 \mathrm{O} 2}=0.691 \mathrm{~atm}, \mathrm{P}_{\mathrm{O} 2}=0.0652 \mathrm{~atm}, \mathrm{P}_{\mathrm{CO} 2}=1.62 \mathrm{~atm}, \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=1.94 \mathrm{~atm}$
d. $\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 522}=1.92 \mathrm{~atm}, \mathrm{P}_{\mathrm{O} 2}=1.31 \mathrm{~atm}, \mathrm{P}_{\mathrm{CO} 2}=0.0845 \mathrm{~atm}, \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=0.390 \mathrm{~atm}$
17. Calculate the equilibrium concentration of CO_{2}, given that you start with 1 M each of $\mathrm{CO}, \mathrm{CO}_{2}$, and H_{2} in water, and $\mathrm{K}_{\mathrm{c}}=223$.

$$
\mathrm{CO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{aq})
$$

a. $\quad 1.98 \mathrm{M}$
b. 0.126 M
c. 0.00893 M
d. 1.87 M
18. For the formation of ammonia, imagine you start with $1.5 \mathrm{M} \mathrm{N}_{2}, 1 \mathrm{M} \mathrm{H}_{2}$ and $2.5 \mathrm{M} \mathrm{NH}_{3}$. Which way will the reaction shift, given $\mathrm{K}_{\mathrm{c}}=3.8$?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

a. To the products.
b. To the reactants.
c. It won't.
d. Up.
e. Down.
19. An exothermic reaction is placed over a flame. What happens to the reaction?
a. Nothing happens.
b. The reaction shifts toward the reactants.
c. The reaction shifts toward the products.
20. The pressure on the vessel in which the following reaction is taking place is doubled. What happens to the reaction?

$$
\mathrm{N}_{2}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{~g})
$$

a. Nothing happens.
b. The reaction shifts toward the reactants.
c. The reaction shifts toward the products.
21. At $298 \mathrm{~K}, \Delta \mathrm{G}$ for a given reaction is -25.7 kJ . What is K for this reaction at 298 K ?
a. $\quad 1.01$
b. 0.990
c. 3.20×10^{4}
d. 3.13×10^{-5}
e. 22.0
22. At some temperature, $\mathrm{K}_{\mathrm{w}}=5 \times 10^{-14}$. What is the pOH of pure water at this temperature?
a. $\quad 6.00$
b. 6.65
c. 7.00
d. 7.35
e. 8.00
23. Which of the following is the most likely temperature at which $\mathrm{K}_{\mathrm{w}}=5 \times 10^{-14}$ as above, given $\mathrm{K}_{\mathrm{w}}=1 \times 10^{-14}$ at room temperature?
a. $0^{\circ} \mathrm{C}$
b. $12{ }^{\circ} \mathrm{C}$
c. $25^{\circ} \mathrm{C}$
d. $50^{\circ} \mathrm{C}$
24. What is the OH^{-}concentration of a solution that is pH 4.6 ?
a. 9.4
b. 2.5×10^{-5}
c. 4×10^{-10}
d. 1×10^{-10}
e. 7
25. Which of the following is the strongest base?
a. Ammonia, $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$
b. Aniline, $\mathrm{K}_{\mathrm{b}}=4.2 \times 10^{-10}$
c. Dimethylamine, $\mathrm{K}_{\mathrm{b}}=5.1 \times 10^{-4}$
d. Pyridine, $\mathrm{K}_{\mathrm{b}}=1.4 \times 10^{-9}$
e. Urea, $\mathrm{K}_{\mathrm{b}}=1.5 \times 10^{-14}$
26. What is the pH of a 0.05 M solution of $\mathrm{Ba}(\mathrm{OH})_{2}$. Hint, you really don't need a calculator to do this problem?
a. 1
b. 13
c. 1.3
d. 12.7
27. The pK_{a} of hydrofluoric acid (HF) is 3.15 . If 132 g of HF is dissolved in 1 L of water, what is the pOH of the resulting solution?
a. $\quad 13.5$
b. 12.83
c. 14.66
d. 1.17
e. 14.82
28. 1 mole of ethylenediamine is dissolved in 1 L water, and the resulting $\left[\mathrm{OH}^{-}\right]$is $3.16 \times 10^{-11} \mathrm{M}$. What is K_{a} for ethylenediamine?
a. 10^{-22}
b. 10^{-7}
c. 5×10^{-6}
d. 1.8×10^{-2}
29. Which of the following is not a strong acid?
a. HF
b. HCl
c. HBr
d. HI
e. HClO_{4}
f. HClO_{3}
30. $\quad 100 \mathrm{ml}$ of 0.2 M formic acid and 200 ml of .1 M lithium formate are mixed together, What type of solution is formed and what is the $\mathrm{pH} ? \mathrm{Ka}=1 \times 10^{-4}$ for formic acid. Hint: You should feel silly if you use a calculator.
a. Buffer, 4
b. Weak acid, 2.3
c. Weak base, 10
d. Buffer, 2.3
e. Weak acid, 4
f. Weak base, 11.7

