CH 302 Spring 2008 Worksheet 8 Answer Key

1. NaH_2PO4 (conc. = $C_{NaH2PO4}$) is dissolved in water. Write the mass balance equation for this system.

Answer: $C_{NaH2PO4} = [H_3PO_4] + [H_2PO_4] + [HPO_4] + [PO_4]$

2. Write the charge balance equation for the solution in question 1.

Answer: $[H^+] = [OH^-] + [H_2PO_4] + 2[HPO_4] + 3[PO_4]$

3. Write the charge balance equation for a solution containing all of the following ions: H⁺, OH⁻, Na⁺, Ba²⁺, PO₄³⁻, Ag³⁺, SO₄²⁻, and COOH⁻.

Answer: $[H^+] + [Na^+] + 2[Ba^{2+}] + 3[Ag^{3+}] = [OH^-] + [COOH^-] + 2[SO_4^{2-}] + 3[PO_4^{3-}]$

4. NaH₂PO₄, LiHCO₃, HCl, NaCl, and LiOH are all dissolved in water. How many equations are needed to completely describe this system?

Answer: In solution, we have: H⁺, OH⁻, Na⁺, H₃PO₄, H₂PO₄⁻, HPO₄²⁻, PO₄³⁻, Li⁺, H₂CO₃, HCO₃⁻, CO₃²⁻, and Cl⁻. So we need 12 equations.

5. Write a charge balance equation for the system described in question 4.

Answer: $[H^{+}] + [Na^{+}] + [Li^{+}] = [OH^{-}][Cl^{-}] + [H_{2}PO_{4}^{-}] + 2[HPO_{4}^{2-}] + 3[PO_{4}^{3-}] + [HCO_{3}^{-}] + 2[CO_{3}^{2-}]$

6. Write the mass balance equation for H_2CO_3 (conc. = C_{H2CO_3}) in water.

Answer: $C_{H2CO3} = [H_2CO_3] + [HCO_3^-] + [CO_3^2]$

7. Find the pH of 10^{-8} M HCl like you would have for the last two quizzes. Then find it using the exact expression, $[H^+]^2 - [H^+]C_{HCl} - K_w = 0$. Compare the two answers.

Answer: Like the last two quizzes:

$$[H^{+}] = C_a + 10^{-7} = 1.1 \times 10^{-7} \text{ pH} = 6.96$$

Exactly:

Solving the quadratic equation yields: $[H^+] = 1.05 \times 10^{-7}$ pH = 6.98

The exact solution is a slightly higher pH because the extra H^+ from the HCl causes a shift in the water equilibrium to the left, resuling in a lower $[H^+]$.

8. Repeat the same thing as in question 7, this time for 10^{-2} M HCl.

Answer: Same work, so I'll just give the answers:

Like the last two quizzes: pH = 2

Exactly: pH = 2

So the water equilibrium really doesn't matter in this case.

9. Assuming an appropriate C_{HCl} , derive the approximate equation for a strong acid, $[H^+] = C_a$, from the expression given in question 6.

Answer: Assuming C_a is large, and since HCl is strong, $[H^+]C_a >> K_w$. So we get:

$$[H^+]^2 - [H^+]C_a - K_w \approx [H^+]^2 - [H^+]C_a = 0$$
 Divide by [H^+]
$$[H^+] - C_a = 0$$

$$[H^+] = C_a$$

10. In class, you were showen that the exact [H⁺] for a weak acid is given by

$$[H^{+}]^{3} + K_{a}[H^{+}]^{2} - (K_{w} + K_{a}C_{a})[H^{+}] - K_{a}K_{w} = 0$$

Assuming appropriate values for K_a and C_a , derive the approximate equation for a weak acid, $[H^+] = (K_a C_a)^{1/2}$, from this expression.

Answer: K_w is small and we assume K_a is small "enough," so $K_aK_w\approx 0$.

$$[H^{+}]^{3} + K_{a}[H^{+}]^{2} - (K_{w} - K_{a}C_{a})[H^{+}] = 0$$
$$[H^{+}]^{2} + K_{a}([H^{+}] - C_{a}) - K_{w} = 0$$

Weak acids barely dissociate, so $[H^+] \ll C_a$. Furthermore, $[H^+]^2$ and $K_a[H^+]$ are both much larger than K_w . Thus, we get

$$[H^{+}]^{2} - K_{a}C_{a} = 0$$

 $[H^{+}] = (K_{a}C_{a})^{1/2}$

11. What is the pH of a 0.05 M H_2SO_4 solution if $K_{a2} = 1.1 \times 10^{-2}$? (In class, Dr. Laude did this using a RICE expression and ignored the water equilibrium. Feel free to use his same approach.)

Answer: Setting up the first RICE expression, assuming complete dissociation of the storng acid, at equilibrium you have 0.05 M HSO_4^- and 0.05M H^+ . The second equilibrium produces the equation $x^2 + 0.061 \times 10^{-2} \text{x} - 5.5 \times 10^{-4} = 0$ which yields the root x = 0.007974 which is the amount of H^+ produced in the second dissociation. When added to the 0.05 M H^+ from the first dissociation, the total $H^+ = 0.0579 \text{ M}$ or a pH of 1.2.

12. Rank the concentrations of ions and neutrals at equilibrium in the solution formed in problem 11. Use some common sense reasoning to explain your answer without doing any calculations.

Answer:
$$H_2O >> H^+ >> HSO_4^- >> SO_4^- > OH^- > H_2SO_4$$

 H_2O is 55 M so it is largest. We assume H_2SO_4 dissociates completely and is 0 M so it is the smallest concentration. In the RICE expression H^+ and HSO_4^- are produced equally in the first dissociation, but some of the HSO_4^- dissociates to form $SO_4^=$ and H^+ so the total H^+ is slightly higher than the HSO_4^- . The SO_4^- is the result of the second dissociation and so it is less than HSO_4^- . The OH^- will be very small because the solution is strongly acidic.

For Questions 13-20, list the species present in solution and write the system of equations that can be used to solve for their concentrations at equilibrium <u>exactly</u>. You don't have to actually solve the system (but if you're an engineer, go for it).

13. HF (conc. = C_{HF}) in water

Answer: We have H⁺, OH⁻, and F⁻. So we need 3 equations.

$$\begin{split} K_{w} &= [H^{+}][OH^{-}] \\ K_{a} &= [H^{+}][F^{-}]/[HF] \\ [H^{+}] &= [OH^{-}] + [F^{-}] \end{split}$$

14. HCl (conc. = C_{HCl}) in water

Answer: We have H⁺, OH⁻, and Cl⁻. So we need 3 equations.

$$K_w = [H^+][OH^-]$$

$$[H^+] = [OH^-] + [Cl^-]$$
$$C_{HCl} = [Cl^-]$$

15. HCl (conc. = C_{HCl}) and NH₄Cl (conc. = C_{NH4Cl}) in water

Answer: We have H⁺, OH⁻, Cl⁻, NH₃, and NH₄⁺. So we need 4 equations.

$$\begin{split} K_w &= [H^+][OH^-] \\ K_a &= [H^+][NH_3]/[NH_4^+] \\ [H^+] &+ [NH_4^+] = [OH^-] + [Cl^-] \\ [Cl^-] &= C_{HCl} + C_{NH4Cl} \\ C_{NH4Cl} &= [NH_4^+] + [NH_3] \end{split}$$

16. Ba(OH)₂ (conc. = $C_{Ba(OH)2}$) in water

Answer: We have H⁺, OH⁻, and Ba²⁺. So we need 4 equations.

$$K_w = [H^+][OH^-]$$

 $[Ba^{2+}] = C_{Ba(OH)2}$
 $[H^+] + 2[Ba^{2+}] = [OH^-]$

17. HCOOH (conc. = C_{HCOOH}) in water

Answer: We have H⁺, OH⁻, and COOH⁻. So we need 3 equations.

$$\begin{split} K_w &= [H^+][OH^-] \\ K_a &= [H^+][COOH^-]/[HCOOH] \\ [H^+] &= [OH^-] + [COOH^-] \end{split}$$

18. NaOH (conc. = C_{NaOH}) in water

Answer: We have H⁺, OH⁻, and Na⁺. So we need 3 equations.

$$K_{w} = [H^{+}][OH^{-}]$$
 $C_{NaOH} = [Na^{+}]$
 $[H^{+}] + [Na^{+}] = [OH^{-}]$

19. NaOH (conc. = C_{NaOH}) added to a beaker containing Na⁺ ions at a concentration of C_{Na}

Answer: We have H⁺, OH⁻, and Na⁺. So we need 3 equations.

$$K_{w} = [H^{+}][OH^{-}]$$
 $C_{NaOH} + C_{Na} = [Na^{+}]$
 $[H^{+}] + [Na^{+}] = [OH^{-}]$