Homework Set III

CH 353, Vanden Bout, Summer 2008

Chapter 4

```
D4.4, E4.2a, E4.5a, E4.8a, P4.5, P4.17
Chapter 5
D5.3, E5.3a, E5.14a, 5.16a
```

1. Water has a higher density in its liquid state than its solid state. Therefore if you apply pressure, it will melt. The pressure at the bottom of a large object or fluid can be determined from the force of the weight of the mass on top of it. The pressure is given by $P = \rho gh$, where g is the acceleration due to gravity, h is the height of the substance, and ρ is the density of the material (be careful with your units). Using the data below and and pressure formula given in the problem how thick could a glacier made of pure water get before the bottom of the glacier would begin to melt at -5°C? You can assume $\Delta_{FUS}H^{\circ}$ and the densities are independent of temperature over this small range.

```
Density (solid) = 0.917 g/cm<sup>-3</sup>
Density (liquid) = 1.000 g/cm<sup>-3</sup>
\Delta_{\text{FIIS}}\text{H}^{\circ} = 333.5 J g<sup>-1</sup>
```

- 2. Use the vapor pressures at various temperature for the liquid and solid for a substance \mathbf{X} to find $\Delta_{SUB}H$, $\Delta_{VAP}H$, $\Delta_{FUS}H$, and the triple point. The vapor pressure of solid \mathbf{X} is 2.64 Torr at -112°C. At -126.5°C it is only 0.263 Torr. The vapor pressure of liquid \mathbf{X} is 11.93 Torr at -100°C and 55.36 at -80°C.
- 3. Imagine a super-cooled liquid \mathbf{X} at $-10^{\circ}\mathrm{C}$ whose normal melting temperature is $0^{\circ}\mathrm{C}$. Iif left alone the super-cooled water will remain a liquid for a long time even below its freezing point. In this metastable state it will be in equilibrium with vapor just like a normal liquid. The vapor pressure of super-cooled \mathbf{X} at $-10^{\circ}\mathrm{C}$ is 2.9×10^{-3} bar. Solid \mathbf{X} at $-10^{\circ}\mathrm{C}$ is also in equilibrium with \mathbf{X} vapor and its vapor pressure is 2.6×10^{-3} bar. Using only the vapor pressures find $\Delta \mathbf{G}$ for super-cooled \mathbf{X} freezing to a solid at $-10^{\circ}\mathrm{C}$.

4.

What is the boiling point, freezing point and osmotic pressure of a solution of 1 L of water with 10 g of NaCl in it? Note: NaCl will become Na+ and Cl- in solution effectively doubling the effect on the salt on the colligative properties.