Exam III

CH 353 Sumer 2007

Vanden Bout KEY Name: ____

You can use anything to answer the following except someone else.

Carefully read all the problems. The exam should have 4 questions on 6 pages. The first page has potentially useful information. The last page is for extra writing space.

$$R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$
 $R = 8.314 \text{ x} 10^{-2} \text{ L bar K}^{-1} \text{ mol}^{-1}$ $R = 8.206 \text{ x} 10^{-2} \text{ L atm mol}^{-1} \text{ K}^{-1}$

1 atm =
$$1.01325$$
 bar T/K = T/°C + 273.15 1 atm-L = 101.325 J 1 bar-L = 100 J

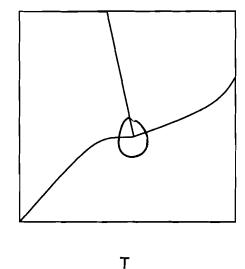
$$g = 9.8 \text{ m s}^{-2} \quad \Pi = \rho g h$$

$$\frac{dP}{dT} = \frac{\Delta S}{\Delta V} = \frac{\Delta H}{T\Delta V} \qquad \qquad \ln\left(\frac{P_2}{P_1}\right) = \frac{-\Delta H}{R} \left[\frac{1}{T_2} - \frac{1}{T_1}\right]$$

$$\Delta T = KX_B$$
 $K = \frac{RT_b^{*2}}{\Delta_{VAP}H}$ $\Delta T = K'X_B$ $K' = \frac{RT_m^{*2}}{\Delta_{FUS}H}$

$$\Pi = \frac{n_B}{V}RT = [B]RT$$

$$\left(\frac{\partial \mu}{\partial P}\right)_T = V_M \qquad \qquad \left(\frac{\partial \mu}{\partial T}\right)_P = -S_M$$


Please sign at the bottom to certify that you have worked on your own. I certify that I have worked the following exam without the help of others, and that the work I am turning in is my own.

Signed:		
	Signature	Date

- 1. True/False Circle either T or F for each statement (10 points each)
- The vapor pressure of a solid can never be higher than the pressure at the triple point.
- T \widehat{F} The melting temperature of solids always increases when the pressure is increased. $\mathcal{H}_{\mathbf{L}}\mathcal{O}$
- The chemical potential always increases with increasing pressure. $\left(\frac{\partial M}{\partial r}\right)_{r} = V_{m} > 0$
- The chemical potential of an undissolved grain of salt in water, is higher than the chemical potential of water in a dilute salt water solution.
- T $\stackrel{\frown}{F}$ For a pure substance at its melting temperature, the solid and the liquid have the same enthalpy $\stackrel{\frown}{S}$ and $\stackrel{\frown}{G}$, $\stackrel{\frown}{S}$ and $\stackrel{\frown}{D}$ $\stackrel{\frown}{H}_{LS}$ $\stackrel{\frown}{S}$ $\stackrel{\frown}{O}$,

2A. (25 points)

Р

The picture at left shows a possible phase diagram for a pure substance around its solid, liquid, vapor triple point. Based on the slopes and curvatures of the lines, it is possible that this a diagram for an actual substance? Why or why not?

Slope for sublination <
slope for vaporization

Slope = DS DVSUB = DVMP = Vgns

ASSUB > ASVAR

Sublination must have have

a greater slope

2B. (25 points)

What is the difference in Gibb's Free Energy between 3 moles of benzene at a temperature of 25°C and pressure of 1 bar, and 3 moles of benzene at a 25°C and a pressure of 10 bar?.

benzene

density = 0.88 g cm⁻³, MW = 78.11 g mol⁻¹, S°= 173.1 J K⁻¹ mol⁻¹, Δ_f G° = -124.3 kJ mol⁻¹

Benzene (25°C, 16xr) -> Benzon (26°C, 36xr)

$$DG = \int \left(\frac{3G}{\delta P}\right)_{r} dP = \int V dP = V DP$$

3 males x 78.11 g mal-1 = 224.33 g

$$\frac{234.33}{.985 \text{ cm}^{-2}} = 266.3 \text{ cm}^{3} = .266 \text{ L}$$

$$DG = \left(.266 \text{ L}\right)\left(25 \text{ cm}^{-2}\right) = .532 \text{ L-bar} = 53.25$$

3. (50 points)

A mixture of 1 liter of a solvent **A** with a non-volatile solute **B** forms an ideal solution that has an osmotic pressure that is measured as 2 bar at 25°C. The density of **A** is 1.0 g cm⁻³, the molecular weight 30 g mol⁻¹, and its pure vapor pressure at 25°C is 50 Torr. The density of **B** is 2.5 g cm⁻³ and the molecular weight is 50 g mol⁻¹ (it has no vapor pressure).

What is the vapor pressure of the solution?

Nexed to know the melefraction of A.

TT = CRT

C= ##

C = 0.083 M

1 L ~ 211 A - 1000 g A - 33.33 mds

C = TT = 2 bar (08314 £-bar K-n4-1/298)

6.083 mdes B

 $\sqrt{A} = \frac{33.33}{33.33 + 063} = 0.9976$

PA = PAXA = (50)(.9976) = 49.88 Tar

4. (50 points)

= 5288 bark

Substance X has a triple point at 25°C with a vapor pressure of 250 Torr. The vapor pressure of the liquid is 500 Torr at 40°C. What is $\Delta_{VAP}H^{\circ}$? What is $\Delta_{FUS}H^{\circ}$? What is the melting temperature of X at 500 bar?

$$\frac{\Delta_{SUB}H^{\circ} = 48 \text{ kJ mol}^{-1}}{\text{density (s)} = 3.2 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g cm}^{-3}} \\
\frac{density (1) = 3 \text{ g cm}^{-3}}{density (1) = 3 \text{ g$$