Exam III

CH 353 Sumer 2007
Vanden Bout
Name:

You can use anything to answer the following except someone else.
Carefully read all the problems. The exam should have 4 questions on 6 pages. The first page has potentially useful information. The last page is for extra writing space.
$\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad \mathrm{R}=8.314 \times 10^{-2} \mathrm{~L}^{\mathrm{bar} \mathrm{K}}{ }^{-1} \mathrm{~mol}^{-1} \quad \mathrm{R}=8.206 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$1 \mathrm{~atm}=1.01325 \mathrm{bar} \quad \mathrm{T} / \mathrm{K}=\mathrm{T} /{ }^{\circ} \mathrm{C}+273.15 \quad 1 \mathrm{~atm}-\mathrm{L}=101.325 \mathrm{~J} \quad 1 \mathrm{bar}-\mathrm{L}=100 \mathrm{~J}$
$\mathrm{g}=9.8 \mathrm{~m} \mathrm{~s}^{-2} \quad \Pi=\rho g h$
$\frac{d P}{d T}=\frac{\Delta S}{\Delta V}=\frac{\Delta H}{T \Delta V} \quad \ln \left(\frac{P_{2}}{P_{1}}\right)=\frac{-\Delta H}{R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]$
$\Delta T=K X_{B} \quad K \cong \frac{R T_{b}^{* 2}}{\Delta_{V A P} H} \quad \Delta T=K^{\prime} X_{B} \quad K^{\prime} \cong \frac{R T_{m}^{* 2}}{\Delta_{\text {rUS }} H}$
$\Pi=\frac{n_{B}}{V} R T=[B] R T$
$\left(\frac{\partial \mu}{\partial P}\right)_{T}=V_{M} \quad\left(\frac{\partial \mu}{\partial T}\right)_{P}=-S_{M}$
Please sign at the bottom to certify that you have worked on your own. I certify that I have worked the following exam without the help of others, and that the work I am turning in is my own.

Signed:

1. True/False Circle either T or F for each statement
(T) F The vapor pressure of a solid can never be higher than the pressure at the triple point.
T (F) The melting temperature of solids always increases when the pressure is increased. $\mathrm{H}_{2} \mathrm{O}$
(T) F The chemical potential always increases with increasing pressure.

$$
\left(\frac{\partial M}{\partial T}\right)_{r}=V_{m}>C
$$

T F The chemical potential of an undissolved grain of salt in water, is higher than the chemical potential of water in a dilute salt water solution. it will dissolve

$$
\begin{aligned}
& \mathrm{T}(\mathrm{~F}) \text { For a pure substance at its melting temperature, the solid and the liquid } \\
& \text { enthalpy Same } G \text {, some } \leadsto \Delta H_{\text {aus }}>0
\end{aligned}
$$

P

T

2B. (25 points)

The picture at left shows a possible phase diagram for a pure substance around its solid, liquid, vapor triple point. Based on the slopes and curvatures of the lines, it is possible that this a diagram for an actual substance? Why or why not?

NO
slope for sublimation c slope for vaporization

$$
\begin{gathered}
\text { slope }=\frac{\Delta S}{\Delta V} \quad \Delta V_{S U b} \approx \Delta V_{V A P} \approx V_{\text {gas }} \\
\Delta S_{S U b}>\Delta S_{V A r}
\end{gathered}
$$

\therefore Sublimation most have z greater slope

What is the difference in Gibbs's Free Energy between 3 moles of benzene at a temperature of $25^{\circ} \mathrm{C}$ and pressure of 1 bar , and 3 moles of benzene at a $25^{\circ} \mathrm{C}$ and a pressure of 10 bar?.
benzene
density $=0.88 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{MW}=78.11 \mathrm{~g} \mathrm{~mol}^{-1}, \mathrm{~S}^{\circ}=173.1 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, \Delta_{\mathrm{f}} G^{\circ}=-124.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
& \text { Benzene }\left(25^{\circ} \mathrm{C}, 1 \mathrm{brr}\right) \longrightarrow \text { Benzan }\left(25^{\circ} \mathrm{c}, 3 \mathrm{brr}\right) \\
& \Delta G=\int\left(\frac{\partial_{G}}{\partial P}\right)_{r} d P=\int V d P=V \Delta P \\
& 3 \text { moles } \times 78.11 \mathrm{smot}=234.33 \mathrm{~s} \\
& \frac{234.33}{.28 \mathrm{scm}^{-3}}=266.3 \mathrm{~cm}^{3}=.266 \mathrm{~L} \\
& \Delta G=(.266 \mathrm{~L})(2 \mathrm{bor})=.532 \mathrm{~L}-b_{2 r}=53.2 \mathrm{~J}
\end{aligned}
$$

3. (50 points)

A mixture of 1 liter of a solvent \mathbf{A} with a non-volatile solute \mathbf{B} forms an ideal solution that has an osmotic pressure that is measured as 2 bar at $25^{\circ} \mathrm{C}$. The density of \mathbf{A} is $1.0 \mathrm{~g} \mathrm{~cm}^{-3}$, the molecular weight $30 \mathrm{~g} \mathrm{~mol}^{-1}$, and its pure vapor pressure at $25^{\circ} \mathrm{C}$ is 50 Torr. The density of \mathbf{B} is $2.5 \mathrm{~g} \mathrm{~cm}^{-3}$ and the molecular weight is $50 \mathrm{~g} \mathrm{~mol}^{-1}$ (it has no vapor pressure).

What is the vapor pressure of the solution?
Need to know the melefrection of A.

$$
\begin{aligned}
& \Pi=C R T \\
& c=
\end{aligned}
$$

$$
\begin{aligned}
& C=0.083 \mathrm{M} \\
& \text { IL~2川A } \Rightarrow 1000 \mathrm{gA} \rightarrow 33.33 \mathrm{mds} \\
& 0.083 \text { modes } B \\
& X_{A}=\frac{33.33}{33.33+.083}=0.9976 \\
& P_{A}=P_{A}^{*} X_{A}=(50)(.9976)=49.88 \text { Tar }
\end{aligned}
$$

4. (50 points)

Substance \mathbf{X} has a triple point at $25^{\circ} \mathrm{C}$ with a vapor pressure of 250 Torr. The vapor pressure of the liquid is 500 Torr at $40^{\circ} \mathrm{C}$. What is $\Delta_{\text {VIP }} \mathrm{H}^{\circ}$? What is $\Delta_{\text {PUS }} H^{\circ}$? What is the melting temperature of \mathbf{X} at 500 bar?

$$
\begin{aligned}
& \Delta_{\text {SUB }} \mathrm{H}^{\circ}=48 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \text { denstiy }(\mathrm{s})=3.2 \mathrm{~g} \mathrm{~cm}^{-3} \\
& \text { density (1) }=3 \mathrm{~g} \mathrm{~cm}^{-3} \\
& \mathrm{MW}=40 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

$$
P_{1}=250 \quad T_{1}=298.15
$$

$$
P_{2}=500 \quad T_{2}=313.15
$$

$$
\begin{aligned}
& \ln \left(\frac{P_{2}}{P_{1}}\right)=-\frac{\Delta H}{R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right] \\
& \ln (2)=\frac{-\Delta H}{R}\left[\frac{1}{31.15}-\frac{1}{298.15}\right] \\
& D H_{m \pi}=35.14 \mathrm{kS} \mathrm{m4}
\end{aligned}
$$

$$
D H _ { \text { Aus } } = \Delta H _ { \text { Sb b } } - \partial H _ { \text { and } } = 4 8 - 3 5 . 1 4 \longdiv { 1 2 . 8 6 \mathrm { kJ } \mathrm { ma } ^ { - 1 } }
$$

$$
\begin{aligned}
\frac{\Delta P}{\Delta T} & \left.=\frac{12,9.000^{2-b r} m^{\prime}}{(298)\left(8, c^{\prime}\right.} \cdot 0^{4} L m \cdot r^{\prime}\right) \\
& =528.8 \text { bor } k^{-1}
\end{aligned}
$$

