Quiz III
 CH 353 Sumer 2008
 Vanden Bout
 Name:

Carefully read all the problems. The exam should have 4 questions on 6 pages. The first page has potentially useful information. The last page is for extra writing space.
$\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad \mathrm{R}=8.314 \times 10^{-2} \mathrm{~L}^{\mathrm{bar} \mathrm{K}}{ }^{-1} \mathrm{~mol}^{-1} \quad \mathrm{R}=8.206 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$1 \mathrm{~atm}=1.01325$ bar $\quad \mathrm{T} / \mathrm{K}=\mathrm{T} /{ }^{\circ} \mathrm{C}+273.15 \quad 1 \mathrm{~atm}-\mathrm{L}=101.325 \mathrm{~J} \quad 1 \mathrm{bar}-\mathrm{L}=100 \mathrm{~J}$
$\mathrm{g}=9.8 \mathrm{~m} \mathrm{~s}^{-2} \quad \Pi=\rho g h$
$\frac{d P}{d T}=\frac{\Delta S}{\Delta V}=\frac{\Delta H}{T \Delta V} \quad \ln \left(\frac{P_{2}}{P_{1}}\right)=\frac{-\Delta H}{R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]$
$\Delta T=K X_{B} \quad K \equiv \frac{R T_{b}^{* 2}}{\Delta_{V A P} H} \quad \Delta T=K_{b} m \quad \Delta T=K^{\prime} X_{B} \quad K^{\prime} \equiv \frac{R T_{m}^{* 2}}{\Delta_{F U S} H} \quad \Delta T=K_{f} \mathrm{~m}$
$\Pi=\frac{n_{B}}{V} R T=[B] R T$
$\left(\frac{\partial \mu}{\partial P}\right)_{T}=V_{M} \quad\left(\frac{\partial \mu}{\partial T}\right)_{P}=-S_{M}$
Please sign at the bottom to certify that you have worked on your own. I certify that I have worked the following exam without the help of others, and that the work I am turning in is my own.

Signed:

1. True/False Circle either T or F for each statement
(10 points each)

(1)
F The liquid phase is never stable at temperatures lower than the temperature at the triple point

T (F) A 1 M solution of NaCl in water will freeze at the same temperature as a 1 M solution of sugar in water.

T (F) The vapor pressure of solid CO_{2} is higher than that of liquid CO_{2} at some temperatures.
(T) F The chemical potential of every substance decreases with increasing temperature at constant pressure.
(T)F The chemical potential of toluene in a 1 M solution of naphthalene in toluene is lower than the chemical potential of pure toluene.

2A. (25 points)
The triple point of ammonia is at a temperature of 195.41 K and a pressure of 0.0608 bar. If the enthalpy of vaporization for ammonia is $23.35 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What is the standard boiling temperature of ammonia?

$$
\begin{aligned}
\ln \left(\frac{1.013}{.0608}\right) & =\frac{-23.350}{8.314}\left(\frac{1}{T_{b}}-\frac{1}{195.41}\right) \\
T_{b} & =243.0 \mathrm{~K}
\end{aligned}
$$

2B. (25 points)
What is the boiling point of a solution made of 100 mL of benzene and 5 g of anthracene

$$
\begin{aligned}
& \text { Benzene } \\
& \text { MeW. }=78.11 \mathrm{~g} \mathrm{~mol}^{-1} \\
& \text { Density }=0.8765 \mathrm{~g} \mathrm{~cm}^{-3} \\
& \mathrm{~K}_{\mathrm{b}}=2.53^{\circ} \mathrm{C} \mathrm{~m}^{-1} \\
& \mathrm{~K}_{\mathrm{f}}=4.3^{\circ} \mathrm{C} \mathrm{~m}^{-1} \\
& \mathrm{~T}_{\mathrm{b}}=80.1^{\circ} \mathrm{C} \\
& \text { Anthracene } \\
& \text { MeW. } 178.23 \mathrm{~g} \mathrm{~mol}^{-1} \\
& \Delta T=K_{b m}=(2.53)(3 \times 125)=7.9 \mathrm{~K} \\
& \frac{5}{178.23}=2.805 \% 10^{-2} \mathrm{~mol} \\
& (100 \mathrm{~mL} \times)(.8765)=87.65 \mathrm{~g} / 100 \mathrm{~g}^{\mathrm{ks}}=8.765 \cdot 10^{-2} \mathrm{ks} \\
& m=\frac{2.805 \cdot 10^{-2} \mathrm{ml}}{8.765 \cdot 10^{-2} \mathrm{ks}}=.3 .125 \mathrm{~m}
\end{aligned}
$$

3. (50 points)

You add 0.1 g of a protein to a make a solution with water (density $1 \mathrm{~g} \mathrm{~cm}^{-3}$) that has a total volume of 100 mL . This solution has an osmotic pressure that is 0.02 bar at $25^{\circ} \mathrm{C}$. What is the molecular weight of the protein? Estimate the vapor pressure of this solution at $25^{\circ} \mathrm{C}$ given the vapor pressure of pure water at that temperature is 25 Torr?

$$
\begin{aligned}
& T=[B] R T \\
& {[B]=\frac{\pi}{R T}=\frac{0.02 \mathrm{br}}{\left(0.08314 L-b_{r r} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}(298 \mathrm{~K})\right.}} \\
& {[B]=8.07 \cdot 10^{-4} \mathrm{M}} \\
& \left(8.07 \cdot 10^{-4} \mathrm{md} L^{-}\right)(.1 \mathrm{~L})=8.07 \cdot 10^{-5} \mathrm{md} \\
& M W=\frac{.1 \mathrm{~g}}{8.07 \cdot 10^{-5} \mathrm{~m} \cdot 1}=1240 \mathrm{Jmd}^{-1} \\
& P_{H 2 O}=X_{H 2 O} P_{H 20}^{*}=\frac{n_{\text {HmO }}}{n_{\text {Protasis }}+n_{H_{2} O}}(25) \\
& 100 \mathrm{~mL} \rightarrow 100 y_{y}=5.55 \mathrm{md} \\
& P_{a_{20}}=\frac{5.55}{5.55+8.04 \cdot 10^{-5}}(25) \approx 25 \text { Tor }
\end{aligned}
$$

4. (50 points)

A chunk of a pure substance with a molecular weight of $86 \mathrm{~g} \mathrm{~mol}^{-1}$ has a density of $1.532 \mathrm{~g} \mathrm{~cm}^{-3}$ at its melting point of $38.89^{\circ} \mathrm{C}$ and a pressure of 1 atm . When the pressure is raised to 25 atm the melting temperature increases to $39.59^{\circ} \mathrm{C}$. Use this information and the thermodynamic information below to estimate the density of the liquid compound at the standard melting point.

$$
\begin{aligned}
& S_{M}^{\circ}(\text { solid })=76.78 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& \Delta_{\text {aus }} \mathrm{H}=2.340 \mathrm{~kJ} \mathrm{~mol}^{-1}=23405 \mathrm{mll}=23 . \| \mathrm{L}-2 t \mathrm{~m} \\
& \text { slope }=\frac{\Delta P}{\Delta T}=\frac{\Delta H}{T \Delta V} \quad \frac{24 \text { sim }}{0.74 \mathrm{~K}}=30.38 \mathrm{ztm} \mathrm{~K}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\Delta V & =\frac{\left(2.438 \cdot 10^{-3}\right.}{}\left(\mathrm{m}^{-14}\right)(86 \mathrm{~g} \mathrm{~mol}) \\
& =2.835 \cdot 10^{-5} \mathrm{~L} \mathrm{~g}^{-1}
\end{aligned} \\
& \Delta V \cdots V_{1 i q}-V_{501} \\
& V_{\text {OI }}=\frac{1}{1.532 \mathrm{~g} \mathrm{~cm}^{-2}}=6.527 \% \\
& \mathrm{Cam}^{1} \\
& =6.527 \cdot 10^{-4} \mathrm{~d} \\
& 2.835 \cdot 10^{-5} L^{-1}=V_{1 i q}-6.527 \cdot 10^{-4} L_{J^{1}} \\
& V_{\text {iq }}=6.811 \cdot 10^{-4} \mathrm{Lg}^{-1}=6.811 \cdot 10^{-1} \mathrm{~cm}^{3} \mathrm{~g}^{-1} \\
& d_{\text {mas' }}+\frac{1}{V}=\frac{1}{6.81 \cdot 1^{2}}=1.460 \mathrm{~g} \mathrm{am}^{-3}
\end{aligned}
$$

(10 points) Don't waste anytime of this if you are not sure of how to figure it out.

The following is a graph of the chemical potential of solid and liquid Gallium as a function of temperature.

Given this graph what is the enthalpy of fusion for Gallium?

$$
\begin{aligned}
& \text { lupe }=-S_{m} \\
& \text { St }-S_{m_{1 i q}}=\frac{-400-475}{k K}=-58.33 \mathrm{Jk} \\
& -S_{m_{\text {SOl }}}=\frac{-300-325}{15}=-41.67 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \Delta_{\text {FeSS }} S=58.53-41.67=16.67 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\
& D_{\mathrm{Gs}} H=T D_{f, S} S=(303 \mathrm{~K})(16.67)=5.05 \mathrm{kJm}
\end{aligned}
$$

